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Hidden Translation and Orbit Coset in Quantum Computing∗

Katalin Friedl† Gábor Ivanyos† Frédéric Magniez‡ Miklos Santha‡ Pranab Sen§

Abstract

We give efficient quantum algorithms for HIDDEN TRANSLATION and HIDDEN SUBGROUP in a
large class of non-abelian groups including solvable groups of bounded exponent and of bounded derived
series. Our algorithms are recursive. For the base case, we solve efficiently HIDDEN TRANSLATION in
Zn

p
, wheneverp is a fixed prime. For the induction step, we introduce the problem ORBIT COSET

generalizing both HIDDEN TRANSLATION and HIDDEN SUBGROUP, and prove a powerful self-
reducibility result: ORBIT COSET in a finite groupG, is reducible to ORBIT COSET in G/N and
subgroups ofN , for any solvable normal subgroupN of G.

1 Introduction

Quantum computing is an extremely active research area (forsurveys see e.g. [RP00, Aha98, Pre98, NC00]),
where a growing trend is to cast quantum algorithms in a grouptheoretical setting. In this setting, we are
given a finite groupG and, besides the group operations, we also have at our disposal a functionf mapping
G into a finite set. The functionf can be queried via an oracle. The complexity of an algorithm is measured
by the overall running time counting one query as one computational step. The most important unifying
problem of group theory for the purpose of quantum algorithms has turned out to be HIDDEN SUBGROUP,
which can be cast in the following broad terms: LetH be a subgroup ofG such thatf is constant on each
left coset ofH and distinct on different left cosets. We say thatf hidesthe subgroupH. The task is to
determine thehidden subgroupH.

While no classical algorithm can solve this problem with polynomial query complexity, the biggest
success of quantum computing until now is that it can be solved by a quantum algorithm efficiently whenever
G is abelian. We will refer to this algorithm as the standard algorithm for HIDDEN SUBGROUP. The
main tool for this solution is Fourier sampling based on the (approximate) quantum Fourier transform for
abelian groups which can be efficiently implemented quantumly [Kit95]. Simon’s xor-mask finding [Sim97],
Shor’s factorization and discrete logarithm finding algorithms [Sho97], and Kitaev’s algorithm [Kit95] for
the abelian stabilizer problem are all special cases of thisgeneral solution.

Addressing HIDDEN SUBGROUP in the non-abelian case is considered to be one of the most important
challenge at present in quantum computing. Besides its intrinsic mathematical interest, the importance of
this problem is enhanced by the fact that it contains as a special case the graph isomorphism problem.
Unfortunately, non-abelian HIDDEN SUBGROUP seems to be much more difficult than the abelian case,
and although considerable efforts were spent on it in the last years, only a few successes can be
reported. They can be divided in two categories. The standard algorithm is extended to some non-
abelian groups in [RB98, HRT00, GSVV01] using the quantum Fourier transform over these groups.
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Unfortunately, efficient quantum Fourier transform implementations are known only for a few non-abelian
groups [Bea97, PRB99, RB98, HRT00]. In a different approach, HIDDEN SUBGROUPwas efficiently solved
in the context of specific black-box groups [BS84, Wat01] by [IMS01] without using the Fourier transform
on the group.

In face of the apparent hardness of HIDDEN SUBGROUPin non-abelian groups, a natural line of research
is to address subproblems of HIDDEN SUBGROUPwhich, in some groups, centralize the main difficulty of
the original problem. In a pioneering paper, Ettinger and Høyer [EH00], in the case of dihedral groups,
implicitly considered another paradigmatic group problem, HIDDEN TRANSLATION. Here we are given
two injective functionsf0 and f1 from a finite groupG to some finite set such that, for some group
elementu, the equalityf1(xu) = f0(x) holds for everyx. The task is to find thetranslation u. In
fact, wheneverG is abelian, HIDDEN TRANSLATION is an instance of HIDDEN SUBGROUP in the semi-
direct productG ⋊ Z2, where the hiding function isf(x, b) = fb(x). In that groupf hides the subgroup
H = {(0, 0), (u, 1)}. Actually, there is a quantum reduction also in the other direction and the two problems
are quantum polynomial time equivalent [EH00]. A nice consequence of this equivalence is that instead of
dealing with HIDDEN SUBGROUPin the non-abelian groupG⋊Z2, we can address HIDDEN TRANSLATION

in the abelian groupG. Ettinger and Høyer [EH00] have shown that HIDDEN TRANSLATION can be solved
by a two-step procedure whenG = ZN is cyclic: polynomial number of Fourier samplings over the abelian
groupZN × Z2 followed by an exponential classical stage without furtherqueries.

Our first result (Theorem 1) is an efficient quantum algorithm for HIDDEN TRANSLATION in the case
of elementary abelianp-groups, that is groupsZn

p , for any fixed prime numberp. The quantum part
of our algorithm is the same as in the Ettinger and Høyer procedure: it consists in performing Fourier
sampling over the abelian groupZn

p × Z2. But while their classical postprocessing requires exponential
time, here we are able to recover classically the translation in polynomial time from the sampling. It turns
out that Fourier sampling produces vectorsy’s non-orthogonal to the translationu, that is we get linear
inequations for the unknownu. This is different from the situation in the standard algorithm for the abelian
HIDDEN SUBGROUP, where only vectors orthogonal to the hidden subgroup are generated. We show that,
after a polynomial number of samplings, the system of linearinequations has a unique solution with high
probability, which we are able to determine in deterministic polynomial time. An immediate consequence
of Theorem 1 is that HIDDEN SUBGROUPis efficiently solvable by a quantum algorithm inZn

p ⋊ Z2.
We remark that it is possible to extend the previous approachto solve HIDDEN TRANSLATION in

the groupsZn
pk

, wherepk is a fixed prime power, but we do not know how to extend it to an arbitrary
abelian group, even of bounded exponent. Therefore, we embark in a radically new direction whose
basic idea is self-reducibility. Since HIDDEN TRANSLATION is not well-suited for this approach, we
will consider ORBIT COSET which is a quantum generalization of both HIDDEN TRANSLATION and
HIDDEN SUBGROUP. ORBIT COSET involves quantum group actions, that is groups acting on a finite set
of mutually orthogonal quantum states. Given two such states |φ0〉 and|φ1〉, the problem consists in finding
their orbit coset, that is the stabilizer of|φ1〉 and a group element that maps|φ1〉 to |φ0〉.

With a slight modification, our algorithm of Theorem 1 also works for ORBIT COSET in Z
n
p whenever

many copies of the input states are given. Moreover we show that ORBIT COSET has the following self-
reducibility property in any groupG: it is reducible to ORBIT COSET in G/N and subgroups ofN , for any
solvable subgroupN ✁ G (Theorem 3). This is the first time that such a general self-reducibility result
has been obtained for a problem incorporating HIDDEN SUBGROUP. It involves a new technique based on
constructing the uniform superposition of the orbit of a given quantum state (ORBIT SUPERPOSITION). We
show how this problem is related to ORBIT COSET (Theorem 2). The self-reducibility of ORBIT COSET

combined with its solvability forZn
p enables us to design an efficient quantum algorithm for ORBIT COSET

in groups that we call smoothly solvable groups (Theorem 4). These groups include solvable groups of
bounded exponent and bounded derived series; in particular, upper triangular matrix groups of bounded
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dimension over finite fields. For the special case of STABILIZER (i.e. ORBIT COSET when|φ1〉 = |φ0〉),
we get an efficient quantum algorithm for an even larger classof solvable groups viz. for solvable groups
having a smoothly solvable commutator subgroup (Theorem 5). As an immediate consequence, we get
efficient quantum algorithms for HIDDEN TRANSLATION and HIDDEN SUBGROUPfor the same groups as
ORBIT COSETand STABILIZER respectively.

2 Preliminaries

2.1 Group theory and quantum computation backgrounds

We say that a quantum algorithm solves a problem with errorε if for every input it produces an output whose
distance from a correct one is at mostε. We say that a problemP is reducibleto a finite set of problems
{Qi : i ∈ I} with error expansionc > 0, if whenever each problemQi has a quantum polynomial time
algorithm with errorε, problemP has also one with errorcε. We say that a computational problem can
be solved in quantum polynomial time if there exists a quantum polynomial time algorithm that outputs the
required solution with exponentially small error.

Our results concern groups represented in the general framework of black-box groups [BS84, Wat01]
with unique encoding. In this model, the elements of a finite groupG are uniquely encoded by binary strings
of lengthO(log|G|) and the group operations are performed by an oracle (the black-box). The groups are
assumed to be input by generators. In the case of an abelian groupG, this implies also that we have at our
disposal the decomposition ofG into Z

p
k1
1

× . . . × Z
pkmm

, wherepkii are prime powers [CM01]. We use

the notation<X> for the subgroup generated by a subsetX of G. We denote by inductionG(k+1) the
commutator(G(k))′ of G(k), whereH ′ = <{h−1k−1hk : h, k ∈ H}> for any subgroupH. Whenever
G is solvable, the decomposition ofG into its derived seriesG = G(0)

✄ G(1)
✄ . . . ✄ G(m) = {1G}

can be computed by a randomized procedure [BCF+95]. Using quantum procedures of [Wat01][IMS01,
Theorem. 10], we can compute the cyclic decomposition of each abelian factor group, and thereby expand
the derived series to acomposition series, where factor groups are cyclic of prime order. We introducea
shorthand notation for specific solvable groups for which most of our results will apply. We say that an
abelian group issmoothly abelianif it can be expressed as the direct product of a subgroup of bounded
exponent and a subgroup of polylogarithmic size in the orderof the group. A solvable group issmoothly
solvableif its derived series is of bounded length and has smoothly abelian factor groups. For a smoothly
solvable groupG, by combining the procedures of [CM01, Wat01, IMS01], we cancompute in quantum
polynomial asmooth seriesG = G0 ✄ G1 ✄ . . . ✄ Gm = {1G}, wherem is bounded, each factor group
Gi/Gi+1 is either elementary abelian of bounded exponent or abelianof size polylogarithmic in the order
of G.

WhenG is abelian, we identify withG the setĜ of characters ofG via some fixed isomorphism
y 7→ χy. The orthogonal ofH ≤ G is defined asH⊥ = {y ∈ G : ∀h ∈ H,χy(h) = 1}. The
quantum Fourier transformoverG is the unitary transformation defined for everyx ∈ G by QFTG|x〉 =

1√
|G|

∑
y∈G χy(x)|y〉. For the sake of convenience, we will use the exact quantum Fourier transform in our

algorithm. The actual implementation [Kit95] introduces only exponentially small errors.
The following well known quantum Fourier sampling algorithm will be used as a building block, where

G is a finite abelian group,S is a finite set andf : G → S is given by a quantum oracle. This algorithm is
actually the main ingredient for solving HIDDEN SUBGROUPin abelian groups when the functionf hides a
subgroupH ≤ G. In that case,Fourier samplingf (G) generates the uniform distribution overH⊥.
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Fourier samplingf (G)
1. Create zero-state|0〉G|0〉S.
2. Create uniform superposition on first register.
3. Query functionf .
4. ComputeQFTG on first register.
5. Observe and then output the first register.

A function f : G → C
S is a quantum functionif, for every x ∈ G, the vector|f(x)〉 has unit norm,

and, for everyx, y ∈ G, the vectors|f(x)〉 and |f(y)〉 are either the same or orthogonal. We say that the
quantum functionf is givenby a quantum oracle if we have at our disposal a unitary transformationUf

satisfyingUf |x〉G|0〉S = |x〉G|f(x)〉S , for everyx ∈ G.

2.2 The problems

Here we define the problems we are dealing with.
Let G be a finite group and letf0, f1 be two injective functions fromG to some finite setS. The

couple of functions(f0, f1) can equivalently be considered as a single functionf : G× Z2 → S where by
definitionf(x, b) = fb(x). We will usef for (f0, f1) when it is convenient in the coming discussion. We
call an elementu ∈ G the translationof f if for everyx ∈ G, we havef1(xu) = f0(x).

HIDDEN TRANSLATION

Input: A finite groupG and two injective functionsf0, f1 fromG to some finite setS such that
f = (f0, f1) has a translationu ∈ G.
Output:u.

For a finite groupG and a finite setΓ of mutually orthogonal quantum states, we consider group actions
of G on Γ. By definition,α : G × Γ → Γ is a group actionif for every x ∈ G the quantum function
αx : |φ〉 7→ |α(x, |φ〉)〉 is a permutation overΓ such that the applicationx 7→ αx is a group homomorphism.
We extendα linearly to superpositions overΓ. When the group actionα is fixed, we use the notation|x · φ〉
for the state|α(x, |φ〉)〉. Having a group actionα at our disposal means having a quantum oracle realizing
the unitary transformation|x〉|φ〉 7→ |x〉|x · φ〉. For any positive integert, we denote byαt the group action
of G on Γt = {|φ〉⊗t : |φ〉 ∈ Γ} defined byαt(x, |φ〉⊗t) = |x · φ〉⊗t. The group actionαt is equivalent
to α from the algebraic point of view. We need this because we define problems below where the input
superpositions cannot, in general, be cloned. In most caseswe need to work with several disentangled
copies of the input superpositions in order to achieve reasonable solutions. The notionαt is introduced in
order to capture these situations. Observe that one can construct a quantum oracle forαt usingt queries to
a quantum oracle forα.

Thestabilizerof a state|φ〉 ∈ Γ is the subgroupG|φ〉 = {x ∈ G : |x · φ〉 = |φ〉}. Given |φ〉 ∈ Γ, the
problem STABILIZER consists in findingO(log|G|) generators for the subgroupG|φ〉.

Proposition 1. Let G be a finite abelian group and letα be a group action ofG. When t =
Ω(log(|G|) log(1/ε)), then STABILIZER in G for the group actionαt can be solved in quantum time
poly(log|G|) log(1/ε) with error ε.

Proof. Let |φ〉⊗t be the input of STABILIZER . Let f be the quantum function onG defined by|f(x)〉 =
|x · φ〉, for everyx ∈ G. Observe thatf is an instance of the natural extension of HIDDEN SUBGROUP to
quantum functions and it hides the stabilizerG|φ〉.

The algorithm for STABILIZER is simply the standard algorithm for the abelian HIDDEN SUBGROUP

with error ε. In this algorithm, every query is of the form|x〉G|0〉S . We simulate theith query |x〉G|0〉S
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using theith copy of |φ〉. The second register of the query is swapped with|φ〉, and then we let actx on it.
We remark that the standard algorithm for abelian HIDDEN SUBGROUPoutputsO(log|G|) generators for
the hidden subgroup. �

Theorbit of a state|φ〉 ∈ Γ is the subsetG(|φ〉) = {|x · φ〉 : x ∈ G}. Theorbit cosetof two states|φ0〉
and|φ1〉 of Γ is the set{u ∈ G : |u · φ1〉 = |φ0〉}. The orbit coset of|φ0〉 and|φ1〉 is either empty or a left
cosetuG|φ1〉 (or equivalently a right cosetG|φ0〉u), for someu ∈ G. If the latter case occurs,|φ0〉 and|φ1〉
have conjugated stabilizers:G|φ0〉 = uG|φ1〉u

−1. ORBIT COSET is a generalization of STABILIZER :

ORBIT COSET

Input: A finite groupG acting on a finite setΓ of mutually orthogonal quantum states, and two
quantum states|φ0〉, |φ1〉 ∈ Γ.

Output:

{
reject, if G(|φ0〉) ∩G(|φ1〉) = ∅;
u ∈ G s.t. |u · φ1〉 = |φ0〉 andO(log|G|) generators forG|φ1〉,otherwise.

For a functionf onG, thesuperpositionof f onG is |f〉 = 1√
|G|

∑
g∈G |g〉|f(g)〉, and forx ∈ G, the

x-translateof f is the functionx · f : g 7→ f(gx). Let Γ(f) = {|x · f〉 : x ∈ G}. Then a group element
x acts naturally on|f ′〉 ∈ Γ(f) by mapping it to the superposition|x · f ′〉 of its x-translate. We call this
group action thetranslation action. The mapping|x〉|f ′〉 7→ |x〉|x · f ′〉 is realized by right multiplying the
first register of|f ′〉 by x−1.

Proposition 2. Let G be a finite group and lett = poly(log|G|). ThenHIDDEN TRANSLATION (resp.
HIDDEN SUBGROUP) is reducible toORBIT COSET (resp. STABILIZER ) for the group actionτ t, whereτ
denotes the translation action. The error expansion is1.

Proof. Let f be an instance of HIDDEN SUBGROUP. Then the stabilizer of|f〉⊗t is the group hidden by
f . Let (f0, f1) be an instance of HIDDEN TRANSLATION. Then the orbit coset of|f0〉⊗t and|f1〉⊗t is the
translation of(f0, f1). �

Given |φ〉 ∈ Γ, the problem ORBIT SUPERPOSITIONconsists in realizing the uniform superposition
|G · φ〉 = 1√

|G(|φ〉)|
∑

|φ′〉∈G(|φ〉) |φ′〉. Note that this superposition can be also written as

1√
|G/G|φ〉|

∑
x∈G/G|φ〉

|x · φ〉

3 Hidden Translation

The main result of this section is that HIDDEN TRANSLATION can be solved in polynomial time by a
quantum algorithm in the special case whenG = Z

n
p for any fixed prime numberp. In this section we use

the additive notation for the group operation andx · y stands for the standard inner product forx, y ∈ Z
n
p .

Whenp = 2, there already exists a quantum polynomial time algorithm since it is just an instance of Simon’s
xor-mask finding [Sim97].

The quantum part of our algorithm consists of performingFourier sampling over the abelian group
Z
n
p × Z2. It turns out that from the samples we will only use elements of the form (y, 1). The important

property of these elementsy is that they are not orthogonal to the hidden translation. Some properties of the
distribution of the samples are stated for general abelian groups in the following lemma.

Lemma 1. Letf = (f0, f1) be an instance ofHIDDEN TRANSLATION in a finite abelian groupG having a
translationu 6= 0. ThenFourier samplingf (G × Z2) outputs an element inG× {1} with probability1/2.
Moreover, the probability of sampling the element(y, 1) depends only onχy(u), and is0 if y ∈ u⊥.
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Proof. The state of the algorithmFourier samplingf (G × Z2) before the final observation is
1

2|G|
∑

x∈G

∑

y∈G

∑

c=0,1

χy(x)
(
1 + (−1)cχy(u)

)
|y〉|c〉|f0(x)〉.

�

WhenG = Z
n
p , the valueχy(u) depends only on the inner producty · u overZp, andy ∈ u⊥ exactly

when y · u = 0. Therefore every(y, 1) generated satisfiesy · u 6= 0. Thus the output distribution is
different from the usual one obtained for the abelian HIDDEN SUBGROUPwhere only vectors orthogonal to
the hidden subgroup are generated. We overcome the main obstacle, which is that we do not know the actual
value of the inner producty · u, by raising these inequations to the powerp−1. They become a system of
polynomial equations sinceap−1 = 1 for every non-zeroa ∈ Zp. In general, solving systems of polynomial
equations over any finite field is NP-complete. But using the other special feature of our distribution, which
is that the probability of sampling(y, 1) depends only on the inner producty·u, we are able to show that after
a polynomial number of samplings, our system of equations has a unique solution with constant probability,
and the solution can be determined in deterministic polynomial time.

To solve our system of polynomial equations, we linearize itin the(p−1)st symmetric power ofZn
p . We

think ofZn
p as ann-dimensional vector space overZp. For a fixed prime numberp and an integerk ≥ 0, let

Z
(k)
p [x1, . . . , xn] be thekth symmetric power ofZn

p which will be thought of as the vector space, over the
finite fieldZp, of homogeneous polynomials of degreek in variablesx1, . . . , xn. The monomials of degree

p−1 form a basis ofZ(p−1)
p [x1, . . . , xn], whose dimension is therefore

(n+p−2
p−1

)
, which is polynomial inn.

For everyy = (a1, . . . , an) ∈ Zn
p , we definey(k) ∈ Z

(k)
p [x1, . . . , xn] as the polynomial(

∑n
j=1 ajxj)

k.

Now observe that if the hidden translation vector isu = (u1, . . . , un) then the vectoru∗ ∈ Z
(k)
p [x1, . . . , xn]

which for every monomialxe11 · · · xenn has coordinateue11 · · · uenn , satisfiesy(p−1) ·u∗ = (y ·u)p−1. Therefore
each linear inequationy · u 6= 0 overZn

p will be transformed into the linear equationy(p−1) · U = 1 over

Z
(p−1)
p [x1, . . . , xn], whereU is adimZ

(p−1)
p [x1, . . . , xn]-sized vector of unknowns.

In fact, the polynomialsy(p−1) have full rank wheny ranges overZn
p . Moreover, in what is the

main part of our proof, we show in Lemma 3 that whenever the span of y(p−1) for the samplesy is not
Z
(p−1)
p [x1, . . . , xn], our sampling process furnishes with constant probabilitya vectory ∈ Z

n
p such that

y(p−1) is linearly independent from they(p−1) for the previously sampledy. This immediately implies that
if our sample size is of the order of the dimension ofZ

(p−1)
p [x1, . . . , xn], the polynomialsy(p−1) are of full

rank with high probability. When the polynomials have full rank, the linear equationsy(p−1) · U = 1 have
exactly one solution which isu∗. From this unique solution one can easily recover a vectorv such that
v∗ = u∗. Sinceu is of the formav, for some0 < a < p, the translation vector can be found by checking
the(p−1) possibilities.

The following combinatorial lemma is at the basis of the correctness of our procedure.

Lemma 2 (Line Lemma). Let y, z ∈ Z
n
p and letLz,y = {(z + ay)(p−1) : 0 ≤ a ≤ p − 1}. Then

y(p−1) ∈ Span(Lz,y).

Proof. LetMz,y = {z(k)y(p−1−k) : 0 ≤ k ≤ p − 1}. ClearlySpan(Lz,y) is included inSpan(Mz,y). We
claim that the inverse inclusion is also true since the determinant ofLz,y in Mz,y is non-zero. Indeed, it

is
(∏p−1

k=0

(p−1
k

))
V (0, 1, 2, . . . , p − 1), whereV denotes the Vandermonde determinant. The lemma now

follows becauseMz,y containsy(p−1). �

Since the proof of the following proposition uses similar ideas as the proof of the Line Lemma, it is
omitted.
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Proposition 3. Z(p−1)
p [x1, . . . , xn] is spanned byy(p−1) asy ranges overZn

p .

We are now ready to prove our main lemma.

Lemma 3. Letu ∈ Z
n
p , u 6= 0 andW be a subspace ofZ(p−1)

p [x1, . . . , xn]. We setR = {y ∈ Z
n
p : y(p−1) ∈

W}. For k = 0, . . . , p − 1, let Vk = {y ∈ Z
n
p : y · u = k} andRk = R ∩ Vk. If W 6= Z

(p−1)
p [x1, . . . , xn],

then|Rk|/|Vk| ≤ (p − 1)/p for k = 1, . . . , p− 1.

Proof. SinceW 6= Z
(p−1)
p [x1, . . . , xn], Proposition 3 implies thatR 6= Z

n
p . We consider two cases. In

the first case,V0 ⊆ R. This implies thatR1 is a proper subset ofV1. Choose anyy ∈ V1 \ R1. Then by
Lemma 2, in every coset of<y> there is an element outside ofR. A coset of<y> contains exactly one
element from eachVk, k = 0, . . . , p − 1. Hence∪k 6=0Vk is partitioned into equal parts, each part of size
p − 1, by intersecting with the cosets of<y>. In each part, there is an element outside ofR. Therefore
|∪k 6=0Rk|/|∪k 6=0Vk| ≤ (p − 2)/(p − 1). Now observe thatRk = {ky : y ∈ R1} for k = 1, . . . , p − 1.
Therefore the setsRk have the same size, and the values|Rk|/|Vk| are the same fork = 1, . . . , p− 1. Thus
|Rk|/|Vk| ≤ (p− 2)/(p − 1) for k = 1, . . . , p − 1, and the statement follows.

In the second case,V0 6⊆ R. Therefore, there is an elementy ∈ V0\R0. Then everyVk, k = 0, . . . , p−1,
is a union of cosets of<y>. The Line Lemma below implies that every coset of<y> contains an element
outside ofR. This proves that|Rk|/|Vk| ≤ (p− 1)/p for k = 1, . . . , p− 1. This completes the proof of the
lemma. �

We now specify the algorithmTranslation finding and prove that, with high probability, it finds the
hidden translation in quantum polynomial time.

Translation findingf(Zn
p )

0. If f0(0) = f1(0) then output0.

1. N ← 13p
(n+p−2

p−1

)
.

2. Fori = 1, . . . , N do (zi, bi)← Fourier samplingf (Zn
p × Z2).

3. {y1, . . . , yM} ← {zi : bi = 1}.
4. Fori = 1, . . . ,M doYi ← y

(p−1)
i .

5. Solve the system of linear equationsY1 · U = 1, . . . , YM · U = 1.

6. If there are several solutions then abort.

7. Let1 ≤ j ≤ n be such that the coefficient ofxp−1
j is 1 inU .

8. Letv = (v1, . . . , vn) ∈ Z
n
p be such thatvj = 1 andvk is the coefficient ofxkx

p−2
j in U for k 6= j.

9. Find0 < a < p such thatf0(0) = f1(av).

10. Outputav.

Theorem 1. For every prime numberp, every integern ≥ 1, and every functionf having a translation
in Z

n
p , Algorithm Translation Findingf(Zn

p ) aborts with probability less than1/2, and when it does not
abort it outputs the translation off . The query complexity of the algorithm isO(p(n+ p)p−1), and its time
complexity is(n+ p)O(p).

Proof. Because of Step 0 of the algorithm, we can suppose w.l.o.g. that the translationu of f is non-zero.
If the algorithm does not abort, thenU = u∗ is the unique solution of the system in Step 5. When the

coefficient ofxp−1
j is 1 in U , thenuj 6= 0. Also, uk = ujvk for everyk. Thus,u = ujv andu is found in

Step 9 fora = uj.
From Lemma 1, the probability thatFourier samplingf (Zn

p × Z2) outputs(y, 1) for somey is 1/2.
Therefore the expected value ofM isN/2, andM > N/3 with probability1 − e−N/18 < 1/4 because of
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Chernoff bound. If the systemY1, . . . , YM has full rank, then it has a unique solution. By Lemmas 1 and 3,
the expected number of linear equations that guarantee thatthe system has full rank isp

(n+p−2
p−1

)
. Since

N/3 > 4p
(
n+p−2
p−1

)
, the solutionU is unique with probability at least3/4 using Markov’s inequality. Thus,

the total probability of aborting is less than1/2. �

Corollary 1. Let p be a fixed prime.HIDDEN TRANSLATION in Z
n
p can be solved in quantum polynomial

time.

Proof. We perform two modifications in AlgorithmTranslation finding . First, to get errorε, the integerN
is multiplied byO(log(1/ε)). Moreover, we assumed in the algorithm that there is an oracle forf = (f0, f1),
that is the functionsf0 andf1 can be quantumly selected. This is not possible in general whenf0 andf1
are given by two distinct oracles. Therefore we replace the oracle access|x〉|b〉|0〉S 7→ |x〉|b〉|fb(x)〉 by

|x〉|b〉|0〉S |0〉S 7→ |x〉|b〉|fb(x)〉|f1−b(−x)〉.
With this type of oracle access the algorithmTranslation finding performs just as well.

Let us now show how to simulate this new oracle access. From|x〉|b〉|0〉S |0〉S we compute
|(−1)bx〉|b〉|0〉S|0〉S , and then we callf0 and get|(−1)bx〉|b〉|f0((−1)bx)〉S|0〉S . We multiply the first register
by (−1) and callf1 which gives|(−1)b+1x〉|b〉|f0((−1)bx)〉S |f1((−1)b+1x)〉S . Finally, we multiply the first
register by(−1)b+1, and swap the last two registers whenb = 1. �

Since there is a quantum reduction from HIDDEN SUBGROUP to HIDDEN TRANSLATION for Z
n
p ⋊

Z2 [EH00], we obtain the following corollary.

Corollary 2. Letp be a fixed prime.HIDDEN SUBGROUPin Z
n
p ⋊Z2 can be solved in quantum polynomial

time.

The algorithmTranslation finding can also be extended to solve ORBIT COSET in Z
n
p .

Corollary 3. Let p be a prime. Letα be a group action ofZn
p . Whent = Ω(p(n + p)p−1 log(1/ε)),

ORBIT COSET in Z
n
p for αt can be solved in quantum time(n+ p)O(p) log(1/ε) with error ε.

Proof. Let (|φ0〉⊗t, |φ1〉⊗t) be the input of ORBIT COSET. We can suppose w.l.o.g. that the stabilizers of
|φ0〉 and|φ1〉 are trivial. Indeed the stabilizers can be computed by Proposition 1. If they are different then
the algorithm obviously has to reject, otherwise we can workin the factor groupZn

p/G|φ0〉 = Z
n′

p , for some
n′ ≤ n.

For b = 0, 1, let fb be the injective quantum function onG defined by|fb(x)〉 = |x · φb〉, for every
x ∈ G. If the orbit coset of(|φ0〉, |φ1〉) is empty, thenf0 andf1 have distinct ranges. Otherwise the orbit
coset of(|φ0〉, |φ1〉) is a singleton{u}, and(f0, f1) have the translationu.

The algorithm for ORBIT COSET on input (|φ0〉⊗t, |φ1〉⊗t) is the algorithmTranslation finding on
inputf = (f0, f1) with a few modifications described below. The oracle access to f is modified in the same
way as Corollary 1. We simulate theith query|x〉|b〉|0〉S |0〉S using theith copy of(|φ0〉, |φ1〉). The last two
registers are swapped with|φb〉|φ1−b〉, and then we let actx on the|φb〉 and(−x) on |φ1−b〉.

The equality tests in steps 0 and 9 are replaced by the swap test [BCWW01, GC01] iteratedO(log(1/ε))
times. Finally, N is multiplied by O(log(1/ε)), and the algorithm rejects whenever the algorithm
Translation finding aborts or there is no solution in steps 5 and 9. �

4 Orbit superposition

The purpose of this section is to show that ORBIT SUPERPOSITIONis reducible to ORBIT COSET in solvable
groupsG. The proof will be by induction along a composition series ofG. The induction step is based on
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the technique of [Wat01] to create a uniform superposition of elements ofG. One way of stating Watrous’s
result is that it solves ORBIT SUPERPOSITIONfor the case of the special action whenG acts on itself by left
multiplication. More precisely, the induction step uses the following lemma.

Lemma 4. LetK be a finite group andα be a group action ofK onΓ. LetL✁K such thatK/L is cyclic
of prime orderr, and |φ〉 ∈ Γ. Given an elementz ∈ K − L, the numberr and |φ〉|L · φ〉⊗t, realizing
|φ〉|K · φ〉⊗(t−1), is reducible toORBIT COSET in K for α with error expansionO(t), for every positive
integert.

Proof. The analysis of the algorithm will distinguish between two cases: case one is whenK|φ〉 6⊆ L, and
case two is whenK|φ〉 ⊆ L. In the first case, for everyx ∈ G, |x · (L · φ)〉 = |K · φ〉, and in particular,

|L · φ〉 = |K · φ〉. In the second case,|K · φ〉 = 1√
r

∑r−1
i=0 |zi · (L · φ)〉, since the orderr is prime.

The algorithm first computest copies of 1√
r

∑r−1
i=0 |i〉|zi · (L · φ)〉, from thet copies of|L · φ〉. We want

to disentangle the first registers using Watrous’s method. We apply the quantum Fourier transform overZr

in these registers. In the first case we obtain the state(|0〉|K · φ〉)⊗t, and in the second case we obtain the
state( 1√

r

∑r−1
j=0 |j〉|ψj〉)⊗t, where|ψj〉 = 1√

r

∑r−1
i=0 ω

ij
r |zi · (L · φ)〉, andωr is a fixed primitiverth-root of

unity.
We now describe the rest of the algorithm by specifying how itbehaves on the terms of the above tensor

products. Let|j0〉|ψj0〉|j1〉|ψj1〉 . . . |jt−1〉|ψjt−1
〉 be such a term. If all the valuesj are0 then the algorithm

does nothing. Observe that if this happens, we already havet copies of the desired superposition|K · φ〉,
independently of which case we are in. Otherwise, letj′ be the first non-zeroj. Note that this can only
happen in case two. We swap|j0〉|ψj0〉 and |j′〉|ψj′〉, and record the valuej′ in an ancilla register. For
convenience of notation, we continue to refer to the first tworegisters as|j0〉|ψj0〉. Thus, we have ensured
thatj0 6= 0. Using|ψj0〉 our purpose will be to cancel the phases of all the other states |ψj〉 for which j 6= 0.
Observe that|l · ψj0〉 = |ψj0〉 for everyl ∈ L (and hence for everyk ∈ K|φ〉), and|z · ψj0〉 = ω−j0

r |ψj0〉.
Therefore if we setf = j(j0)

−1 mod r for somej 6= 0, then, for everyi ∈ {0, . . . , r − 1}, l ∈ L, and
k ∈ K|φ〉, |(zilk)f · ψj0〉 = ω−ij

r |ψj0〉.
We now complete the reduction by computing|φ〉|ψj0〉|K · φ〉 from |φ〉|ψj0〉|ψj〉, whenj 6= 0. Note

that if j = 0, |ψj〉 is already equal to|K · φ〉. For every state|zil · φ〉 of |ψj〉, we find the cosetzilK|φ〉 using
ORBIT COSET in K for |zil · φ〉 and|φ〉. Let zilk be some representative of the coset wherek ∈ K|φ〉. We
let (zilk)f act on|ψj0〉 and reverse the previous ORBIT COSET procedure. This realizes the transformation
|φ〉|ψj0〉|zil · φ〉 7→ ω−ij

r |φ〉|ψj0〉|zil · φ〉. The effect on|φ〉|ψj0〉|ψj〉 is |φ〉|ψj0〉|K · φ〉. Since the first
pair of registers remains unchanged, the process can be repeated for the other states, and therefore we get
|φ〉|j0〉|ψj0〉|j1〉|K · φ〉 . . . |jt−1〉|K · φ〉, together with some garbage in the ancilla register.

�

Theorem 2. Let G be a finite solvable group and letα be a group action onΓ. Let |φ〉 ∈ Γ. Given
|φ〉⊗(s+⌊log|G|⌋+1), realizing |φ〉|G · φ〉⊗s is reducible toORBIT COSET in subgroups ofG for α with error
expansionO(s log|G|+ log2|G|).

Proof. Let us recall that the groupG can be given with elementszi and primesri, for i = 0, . . . ,m−1, such
thatG has a composition seriesG = G0✄G1✄ . . .✄Gm = {1G}, whereGi/Gi+1 is cyclic of orderri and
is generated byziGi+1. By induction, fori = m downtoi = 0, we will produce the state|φ〉|Gi · φ〉⊗(s+i).

For i = m, by the hypothesis we have at leasts + m + 1 states|φ〉 = |Gm · φ〉 sincem ≤ log|G|.
Assume now that we have|φ〉 ands+ i copies of the state|Gi · φ〉. By applying Lemma 4 withK = Gi−1,
L = Gi, z = zi−1 andr = ri−1, we gets + i − 1 copies of the state|Gi−1 · φ〉. Wheni = 0, we obtain
|φ〉|G · φ〉⊗s.

�
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5 Orbit coset self-reducibility

This section is based on the following theorem stating the reducibility of ORBIT COSET in G to
ORBIT COSET in proper normal subgroups ofG under some conditions. Given a group actionα of G
on a finite setΓ of mutually orthogonal quantum states, we define for every proper normal subgroupN ✁G
the group actionαN of G/N on{|N · φ〉 : |φ〉 ∈ Γ} by αN (xN, |N · φ〉) = |x · (N · φ)〉, for everyx ∈ G
and|φ〉 ∈ Γ. Note that this action is independent of the coset representative chosen.

Theorem 3. LetG be a finite group and letN ✁ G,N 6= G be solvable such thatG, N andG/N are
black-box groups with unique encoding. Letα be a group action ofG and lets ≥ 1 be an integer. When
t = Ω(s + log|G|), ORBIT COSET (resp. STABILIZER ) in G for αt is reducible toORBIT COSET in
subgroups ofN for α and ORBIT COSET (resp. STABILIZER ) in G/N for (αN )s with error expansion
O(s log|G| + log2|G|).

Proof. We first prove the statement for the STABILIZER reduction. The proof for the ORBIT COSET

reduction uses the result for STABILIZER . This is indeed legitimate since STABILIZER is the special case of
ORBIT COSETwhen the two inputs are identical.

Let |φ〉⊗t be an instance of STABILIZER . Its stabilizerH is the same as the stabilizer of|φ〉. First we
computeO(log|N |) generators for the intersectionH0 = H ∩N using STABILIZER in N for α in quantum
polynomial time. Then we use ORBIT COSET in N to constructH1 ≤ G which in fact will turn out to be
H. The properties which will ensure that equality areH0 ≤ H1 ≤ H andH1N/N = HN/N . Indeed, the
first property clearly implies thatH1∩N = H ∩N , which together with the second one gives thatH1 = H
from the isomorphism theorem.

To constructH1 we add toH0 generators inH ofHN/N . The construction proceeds in two steps. First,
we find a setV ⊆ G which, when its elements are considered as coset representatives, contains a generator
set forHN/N . Then, for every cosetzN wherez ∈ V , we find a coset representative ofzN inH. This step
is achieved via a reduction to ORBIT COSET in N . The collection of those representatives andH0 together
generate the desired subgroupH1.

The stabilizer of|N · φ〉 for αN in G/N isHN/N . Therefore findingV is reducible to STABILIZER in
G/N for (αN )s on input|N · φ〉⊗s. By Theorem 2, creating this input is also reducible to ORBIT COSET in
subgroups ofN for α on inputs+ ⌊log|G|⌋ + 1 copies of|φ〉. Note that the size ofV isO(log|G/N |).

We describe now how to find, using ORBIT COSET in N , for eachz ∈ V , an elementn ∈ N such that
zn ∈ H. Fix z ∈ V . We can construct|φ′〉 = |z−1 · φ〉 using a copy of|φ〉. In the subgroupN , the states
|φ′〉 and|φ〉 have the orbit cosetnH0. Thus the cosetnH0 can be found using ORBIT COSET in N for α.

We now turn to the proof of the ORBIT COSET reduction. Let(|φ0〉⊗t, |φ1〉⊗t) be the input of
ORBIT COSET. Their orbit coset is identical to the orbit coset of(|φ0〉, |φ1〉), and it is either empty or
uG|φ1〉, for someu ∈ G. We computeH = G|φ1〉 using the above construction. When the orbit coset of the
input is empty, the states|N · φ0〉⊗s and|N · φ1〉⊗s have also empty orbit coset. Otherwise they have the
orbit cosetuHN/N .

By Theorem 2, the constructions of states|N · φ0〉⊗s and |N · φ1〉⊗s are reducible to ORBIT COSET

in N for α on inputss + ⌊log|G|⌋ + 1 copies of|φ0〉 and |φ1〉. Then using ORBIT COSET in G/N for
(αN )s in input |N · φ0〉⊗s and |N · φ1〉⊗s, we reject if the inputs have empty orbit coset, or we find the
coset(uHN)/N , that is an elementv ∈ uHN .

Using ORBIT COSET in N , we can find an elementn ∈ N such thatvn ∈ uH by the method already
used in the STABILIZER reduction. We construct the state|φ′0〉 = |v−1 · φ0〉 using one copy of|φ0〉. Let us
denoteH0 = H ∩ N . Since in the subgroupN , the states|φ′0〉 and|φ1〉 have the orbit cosetnH0, where
n ∈ N is such thatvn ∈ uH, we complete the proof using ORBIT COSET in N . �
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Theorem 4. Let G be a smoothly solvable group and letα be a group action ofG. When t =
(logΩ(1)|G|) log(1/ε), ORBIT COSET can be solved inG for αt in quantum timepoly(log|G|) log(1/ε)
with error ε.

Proof. AsG is smoothly solvable, it has a smooth seriesG = G0 ✄G1 ✄ . . . Gm−1 ✄Gm = {1G}, where
m is bounded,Gi/Gi+1 is either elementary abelian of bounded exponent or of size polylogarithmic in the
order ofG. Observe that we have a cyclic prime power decomposition of each factor groupGi/Gi+1, and for
this representation, we have a black-box oracle for the group action ofGi/Gi+1 on{|Gi+1 · φ〉 : |φ〉 ∈ Γ}.

The proof is by induction onm. The casem = 0 is trivial. For the induction, we can efficiently solve
ORBIT COSET in the factor groupG0/G1: if it is of polylogarithmic size we just do an exhaustive search,
otherwise we apply Corollary 3. Therefore Theorem 3 reducesORBIT COSET in G to ORBIT COSET in
subgroups ofG1. Any subgroupK of G1 has a smooth series of length at mostm−1, since the intersection
of a smooth series forG1 with K gives a smooth series forK. The running time of the overall procedure is
(log|G|)O(m) log(1/ε). �

Theorem 5. LetG be a finite solvable group having a smoothly solvable commutator and letα be a group
action ofG. Whent = (logΩ(1)|G|) log(1/ε), STABILIZER can be solved inG for αt in quantum time
poly(log(|G|) log(1/ε) with error ε.

Proof. By Theorem 3, STABILIZER in G is reducible to STABILIZER in G/G′ and ORBIT COSET in
subgroups ofG′. The factor groupG/G′ is abelian and subgroups ofG′ are smoothly solvable. Therefore,
from Proposition 1 and Theorem 4 the statement follows. �

Since, by Proposition 2, HIDDEN TRANSLATION and STABILIZER are respectively reducible to
ORBIT COSETand STABILIZER , we get similar results for these two problems.

Corollary 4. HIDDEN TRANSLATION can be solved in smoothly solvable groups in quantum polynomial
time. HIDDEN SUBGROUP can be solved in solvable groups having a smoothly solvable commutator
subgroup in quantum polynomial time.
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