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Abstract

We give efficient quantum algorithms foribDEN TRANSLATION and HDDEN SUBGROUPIN a
large class of non-abelian groups including solvable gsaffpounded exponent and of bounded derived
series. Our algorithms are recursive. For the base caseylveefficiently HDDEN TRANSLATION in
Zy,, wheneverp is a fixed prime. For the induction step, we introduce the |@@bORBIT COSET
generalizing both HDEN TRANSLATION and HDDEN SUBGROUP, and prove a powerful self-
reducibility result: GrBIT COSET in a finite groupG, is reducible to @&BIT CoseT in G/N and
subgroups ofV, for any solvable normal subgrouyp of G.

1 Introduction

Quantum computing is an extremely active research areaiffueys see e.d. [RR(0, Ahh98, Pid98, NCO00]),
where a growing trend is to cast quantum algorithms in a gthapretical setting. In this setting, we are
given a finite group= and, besides the group operations, we also have at our disgp@mctionf mapping

G into afinite set. The functioyf can be queried via an oracle. The complexity of an algorithmeasured
by the overall running time counting one query as one contipmi@ step. The most important unifying
problem of group theory for the purpose of quantum algorghmas turned out to be EIDEN SUBGROUR,
which can be cast in the following broad terms: IEetbe a subgroup off such thatf is constant on each
left coset of H and distinct on different left cosets. We say thfahidesthe subgroupd. The task is to
determine thénidden subgroup.

While no classical algorithm can solve this problem withymaimial query complexity, the biggest
success of quantum computing until now is that it can be sidbyea quantum algorithm efficiently whenever
G is abelian. We will refer to this algorithm as the standarglodathm for HDDEN SUBGROUP. The
main tool for this solution is Fourier sampling based on tagpfoximate) quantum Fourier transform for
abelian groups which can be efficiently implemented quatt{igit95]. Simon’s xor-mask finding[[Sim37],
Shor’s factorization and discrete logarithm finding alguris [Sho97], and Kitaev’s algorithnf [Kit95] for
the abelian stabilizer problem are all special cases ofyeral solution.

Addressing HDDEN SUBGROUPIN the non-abelian case is considered to be one of the mostriam
challenge at present in quantum computing. Besides itsantrmathematical interest, the importance of
this problem is enhanced by the fact that it contains as ai@pe&se the graph isomorphism problem.
Unfortunately, non-abelian IHDEN SUBGROUP seems to be much more difficult than the abelian case,
and although considerable efforts were spent on it in thé yasrs, only a few successes can be
reported. They can be divided in two categories. The standégorithm is extended to some non-
abelian groups in[[RB99, HRTP®, GSVM01] using the quantunurfes transform over these groups.
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Unfortunately, efficient quantum Fourier transform impeatations are known only for a few non-abelian
groups [Bead1, PRBPP, RBY8, HRT0O]. In a different appro&ttbDEN SuBGROUPWas efficiently solved
in the context of specific black-box grougs [BH84, Wht01]i301] without using the Fourier transform
on the group.

In face of the apparent hardness ablHEN SUBGROUPIN non-abelian groups, a natural line of research
is to address subproblems oftbEN SuBGROUPWhiIch, in some groups, centralize the main difficulty of
the original problem. In a pioneering paper, Ettinger ang/¢tdEHOQ], in the case of dihedral groups,
implicitly considered another paradigmatic group prohld#nDDEN TRANSLATION. Here we are given
two injective functionsf, and f; from a finite groupG to some finite set such that, for some group
elementu, the equality f1(xu) = fo(x) holds for everyz. The task is to find theranslation u. In
fact, whenevelG is abelian, HDDEN TRANSLATION is an instance of WDEN SUBGROUPIN the semi-
direct productG x Zy, where the hiding function ig(z,b) = f,(x). In that groupf hides the subgroup
H ={(0,0), (u,1)}. Actually, there is a quantum reduction also in the othezalion and the two problems
are quantum polynomial time equivalefit [EHOO]. A nice canpsnce of this equivalence is that instead of
dealing with HDDEN SUBGROUPIN the non-abelian grou@ = Z,, we can addressIHDEN TRANSLATION
in the abelian grouy. Ettinger and Hgyel[[EH(PO] have shown thabDiBEN TRANSLATION can be solved
by a two-step procedure whén= Zy is cyclic: polynomial number of Fourier samplings over thelgan
groupZy x Z- followed by an exponential classical stage without furiipeeries.

Our first result Theorem[J) is an efficient quantum algorithm foriIBIDEN TRANSLATION in the case
of elementary abeliap-groups, that is group&,, for any fixed prime numbep. The quantum part
of our algorithm is the same as in the Ettinger and Hgyer phaee it consists in performing Fourier
sampling over the abelian grouff) x Z,. But while their classical postprocessing requires expbake
time, here we are able to recover classically the translatigpolynomial time from the sampling. It turns
out that Fourier sampling produces vectgis non-orthogonal to the translatian that is we get linear
inequations for the unknowa. This is different from the situation in the standard algori for the abelian
HIDDEN SUBGROUP, where only vectors orthogonal to the hidden subgroup amerg¢éed. We show that,
after a polynomial number of samplings, the system of lineaquations has a unique solution with high
probability, which we are able to determine in determinigtblynomial time. An immediate consequence
of Theoren{]L is that WDEN SuBGROUPIs efficiently solvable by a quantum algorithm#iy x Zs.

We remark that it is possible to extend the previous apprdacsolve HDDEN TRANSLATION in
the groupsZZ , wherep is a fixed prime power, but we do not know how to extend it to dsiteary
abelian group, even of bounded exponent. Therefore, we rmibaa radically new direction whose
basic idea is self-reducibility. Since IBDEN TRANSLATION is not well-suited for this approach, we
will consider QrRBIT COSET which is a quantum generalization of bothiDHdEN TRANSLATION and
HIDDEN SUBGROUP. ORBIT COSET involves quantum group actions, that is groups acting oniee faet
of mutually orthogonal quantum states. Given two such statg and|¢,), the problem consists in finding
their orbit coset, that is the stabilizer [of;) and a group element that majgs ) to |¢g).

With a slight modification, our algorithm of Theordn 1 alsorksofor ORBIT COSETINn Z,, whenever
many copies of the input states are given. Moreover we shatv@RBIT COSET has the following self-
reducibility property in any grougy: it is reducible to &BIT COSETIn G/N and subgroups aV, for any
solvable subgrougV <1 G (Theorem[3. This is the first time that such a general self-reducipitisult
has been obtained for a problem incorporating =N SUBGROUP. It involves a new technique based on
constructing the uniform superposition of the orbit of asgiuantum state (@BIT SUPERPOSITION. We
show how this problem is related torR®IT COoSeT (Theorem[]). The self-reducibility of &BIT COSET
combined with its solvability foZ;; enables us to design an efficient quantum algorithm feB@ COSET
in groups that we call smoothly solvable grouf$i¢orem [§). These groups include solvable groups of
bounded exponent and bounded derived series; in partiayd@er triangular matrix groups of bounded




dimension over finite fields. For the special case DASLIZER (i.e. ORBIT COSETWhen|¢1) = |¢o)),

we get an efficient quantum algorithm for an even larger aldisolvable groups viz. for solvable groups
having a smoothly solvable commutator subgrolibeorem [§). As an immediate consequence, we get
efficient quantum algorithms for IHDEN TRANSLATION and HDDEN SuBGROUPfor the same groups as
ORBIT CosETand SABILIZER respectively.

2 Preliminaries

2.1 Group theory and quantum computation backgrounds

We say that a quantum algorithm solves a problem with erifdior every input it produces an output whose
distance from a correct one is at mestWe say that a probler® is reducibleto a finite set of problems
{Q; : i € I} with error expansiornc > 0, if whenever each probler®; has a quantum polynomial time
algorithm with errore, problem’P has also one with errats. We say that a computational problem can
be solved in quantum polynomial time if there exists a quanpwlynomial time algorithm that outputs the
required solution with exponentially small error.

Our results concern groups represented in the general frarkeof black-box groups[[BS84, Wai01]
with unique encoding. In this model, the elements of a finiteig G are uniquely encoded by binary strings
of lengthO(log|G|) and the group operations are performed by an oracle (th&-blac). The groups are
assumed to be input by generators. In the case of an abebap g, this implies also that we have at our
disposal the decomposition 6f into Zp;fl X oo X Loy wherep® are prime powers[[CM01]. We use

the notation< X > for the subgroup generated by a sub&ebf G. We denote by inductio#*+1) the
commutator(G*))" of G*), whereH' = <{h~'k~'hk : h,k € H}> for any subgroupd. Whenever
G is solvable, the decomposition 6f into its derived seriesd = GO > G > ... > GM™ = {15}
can be computed by a randomized proced{ire [B&J]. Using quantum procedures ¢f [WatdI][IM$01,
Theorem. 10], we can compute the cyclic decomposition dfi @elian factor group, and thereby expand
the derived series to @mposition serieswhere factor groups are cyclic of prime order. We introdace
shorthand notation for specific solvable groups for whictstmad our results will apply. We say that an
abelian group ismoothly abeliarnf it can be expressed as the direct product of a subgroup whdbex
exponent and a subgroup of polylogarithmic size in the oodlehe group. A solvable group mmoothly
solvableif its derived series is of bounded length and has smoothdyiaaio factor groups. For a smoothly
solvable group’, by combining the procedures df [CMOT, WatQ1, TMBE01], we campute in quantum
polynomial asmooth serie€r = Gy > G > ... > G, = {1}, wherem is bounded, each factor group
G;/Gi+1 is either elementary abelian of bounded exponent or abefiaize polylogarithmic in the order
of G.

When G is abelian, we identify withG the setG of characters of7 via some fixed isomorphism
y + Xy. Theorthogonal of H < G is defined asHt = {y € G : Vh € H,x,(h) = 1}. The
quantum Fourier transfornover G is the unitary transformation defined for everye G by QFT|z) =
—— > < Xxy(2)|y). For the sake of convenience, we will use the exact quantumifdransform in our

|G| =¥

algorithm. The actual implementatiop [Ki{95] introducesyoexponentially small errors.

The following well known quantum Fourier sampling algonithwill be used as a building block, where
G is afinite abelian group§ is a finite set ang’ : G — S is given by a quantum oracle. This algorithm is
actually the main ingredient for solvingiBlDEN SUBGROUPIN abelian groups when the functigihides a
subgroupH < G. In that caseFourier sampling/ (G) generates the uniform distribution ov&r".



Fourier sampling/ (G)
1. Create zero-state) ,|0) .
2. Create uniform superposition on first register.
3. Query functionf.
4. ComputeQF T, on first register.
5. Observe and then output the first register.

A function f : G — C% is aquantum functionif, for everyz € G, the vector|f(z)) has unit norm,
and, for everyr,y € G, the vectoryf(z)) and|f(y)) are either the same or orthogonal. We say that the
quantum functionf is givenby a quantum oracle if we have at our disposal a unitary toaimsdtion U,
satisfyingU¢|z) +|0) ¢ = |2) | f(2)) g, fOr everyz € G.

2.2 The problems

Here we define the problems we are dealing with.

Let G be a finite group and lefy, f1 be two injective functions frontz to some finite setS. The
couple of functionq fy, f1) can equivalently be considered as a single funcfionz x Zs — S where by
definition f(z,b) = fp(z). We will use f for (fo, f1) when it is convenient in the coming discussion. We
call an element: € G thetranslationof f if for every z € G, we havef; (zu) = fo(z).

HIDDEN TRANSLATION

Input: A finite groupG and two injective functiongy, f1 from G to some finite sef such that
f = (fo, f1) has a translation € G.

Output: u.

For a finite groupg= and a finite sel’ of mutually orthogonal quantum states, we consider grotiprac
of G onT. By definition,a : G x I' — T is agroup actionif for every x € G the quantum function
ay o) = |a(x, |@))) is a permutation over such that the application — «, is a group homomorphism.
We extend linearly to superpositions ovér. When the group actioa is fixed, we use the notatign: - ¢)
for the statda(z, |¢))). Having a group actiom at our disposal means having a quantum oracle realizing
the unitary transformatiof)|¢) — |z)|z - ¢). For any positive integef, we denote by the group action
of GonTt = {|$)®" : |¢) € T'} defined bya!(z, |¢)*") = |z - $)®". The group action is equivalent
to o from the algebraic point of view. We need this because we @gdinblems below where the input
superpositions cannot, in general, be cloned. In most caseseed to work with several disentangled
copies of the input superpositions in order to achieve measle solutions. The notion' is introduced in
order to capture these situations. Observe that one catrgcina quantum oracle far’ usingt queries to
a quantum oracle fat.

Thestabilizerof a state|¢) € I is the subgroufds|yy = {z € G : |z - ¢) = |¢)}. Given|p) € T, the
problem SABILIZER consists in finding)(log|G|) generators for the subgrowp .

Proposition 1. Let G be a finite abelian group and letx be a group action ofG. Whent =
Q(log(|G])log(1/¢)), then STABILIZER in G for the group actiona! can be solved in quantum time
poly(log|G|) log(1/¢) with error e.

Proof. Let |¢)®" be the input of $SABILIZER. Let f be the quantum function o defined by|f(z)) =
|z - ¢), for everyz € G. Observe thaf is an instance of the natural extension abHEN SUBGROUPtO
quantum functions and it hides the stabilizeg,).

The algorithm for SABILIZER is simply the standard algorithm for the abeliamtDHEN SUBGROUP
with errore. In this algorithm, every query is of the forim)|0) 5. We simulate the'" query |z),|0) ¢



using thei" copy of |¢). The second register of the query is swapped \with and then we let act on it.
We remark that the standard algorithm for abeliambEN SuBGROUP outputsO(log|G|) generators for
the hidden subgroup. |

Theorbit of a statel¢) € I is the subse@(|¢)) = {|z - ¢) : x € G}. Theorbit cosetof two stateg¢py)
and|¢;) of I is the se{u € G : |u- ¢1) = |¢o) }. The orbit coset ofpy) and|¢;) is either empty or a left
cosetuG)y,) (or equivalently a right coset, u), for someu € G. If the latter case occurgpo) and|¢r)
have conjugated stabilizeré&: ) = uG|¢1>u_1. ORBIT COSETIs a generalization of B\BILIZER:

ORBIT COSET
Input: A finite groupG acting on a finite seff' of mutually orthogonal quantum states, and two
quantum stategpy), |¢1) € T

Output: reject,if G(|go)) NG(|¢1)) = 0;
" u€Gstlu-¢r) = |po) andO(log|G|) generators fo6 ), otherwise

For a functionf on G, thesuperpositiorof f onG is |f) = \/—%I >_gec 19)1f(9)), and forz € G, the

z-translateof f is the functionz - f : g — f(gx). LetT'(f) = {|x - f) : = € G}. Then a group element
x acts naturally onf’) € T'(f) by mapping it to the superpositidn - f’) of its z-translate. We call this
group action theranslation action The mappingdz)|f’) — |x)|z - f') is realized by right multiplying the
first register of ') by z 1.

Proposition 2. Let G be a finite group and let = poly(log|G|). ThenHIDDEN TRANSLATION (resp.
HIDDEN SUBGROUB) is reducible toORBIT COSET (resp. STABILIZER) for the group actionr?, wherer
denotes the translation action. The error expansion. is

Proof. Let f be an instance of WDEN SUBGROUP. Then the stabilizer off)®" is the group hidden by
f. Let(fo, f1) be an instance of WDEN TRANSLATION. Then the orbit coset dff,)** and|f;)®" is the
translation of( fo, f1). |

Given |¢) € T, the problem @BIT SUPERPOSITIONCONSIStS in realizing the uniform superposition
|G -¢) = W 2lonec(en |4)- Note that this superposition can be also written as

1
VIG/G )] ZxEG/G\w |- ¢)

3 Hidden Translation

The main result of this section is thatibbEN TRANSLATION can be solved in polynomial time by a
quantum algorithm in the special case whigr= Z; for any fixed prime numbep. In this section we use
the additive notation for the group operation andy stands for the standard inner product foy € Z;.
Whenp = 2, there already exists a quantum polynomial time algorithroesit is just an instance of Simon’s
xor-mask finding[[Sim37].

The quantum part of our algorithm consists of performirmurier sampling over the abelian group
Zy x L. It turns out that from the samples we will only use elemerfithe form (y, 1). The important
property of these elemenjss that they are not orthogonal to the hidden translatiomé&properties of the
distribution of the samples are stated for general abeliangs in the following lemma.

Lemma 1. Let f = (fo, f1) be an instance dfliDDEN TRANSLATION in a finite abelian groug= having a
translationu # 0. ThenFourier sampling/ (G x Z) outputs an element i x {1} with probability 1/2.
Moreover, the probability of sampling the elemént1) depends only on,(u), and isO if y € ut.



Proof. The state of the algorithmFouriersamplingf(G x Zs9) before the final observation is

ﬁ YD @)1+ ()W) [9)]e)] fol))-

z€G yeG c=0,1
|

WhenG = Zy, the valuey,(u) depends only on the inner produgt u overZ,, andy & ut exactly
wheny - u = 0. Therefore everyy, 1) generated satisfieg- « # 0. Thus the output distribution is
different from the usual one obtained for the abelianibEN SuBGROUPWhere only vectors orthogonal to
the hidden subgroup are generated. We overcome the maarctdyst/hich is that we do not know the actual
value of the inner produgj - u, by raising these inequations to the powerl. They become a system of
polynomial equations sina&@ ! = 1 for every non-zera € Z,. In general, solving systems of polynomial
equations over any finite field is NP-complete. But using tieiospecial feature of our distribution, which
is that the probability of samplin@,, 1) depends only on the inner product:, we are able to show that after
a polynomial number of samplings, our system of equatiossahaique solution with constant probability,
and the solution can be determined in deterministic polyiabtime.

To solve our system of polynomial equations, we linearize the (p—1)St symmetric power oz, . We
think of Z;) as amn-dimensional vector space ovéy. For a fixed prime numberand an integek > 0, let
Zﬁ,’“) [z1,...,z,] be thek symmetric power ofZ;; which will be thought of as the vector space, over the
finite field Z,,, of homogeneous polynomials of degre@ variablesz, . .., z,. The monomials of degree

p—1 form a basis onép_l)[xl, ..., ], whose dimension is therefo(@;ﬁf;z), which is polynomial inn.

For everyy = (a1, ...,a,) € Z2, we definey®) € Z¥ (21, ... x,] as the polynomia(}~7_, ajx;)".
Now observe that if the hidden translation vectotis: (uy, ..., u,) then the vector™* € Z}f“) [T1,..., 2]
which for every monomiat! - - - x¢» has coordinate' - - - u», satisfieg/P~") .u* = (y-u)P~'. Therefore
each linear inequatiop - u # 0 overZj; will be transformed into the linear equatigft—") - U = 1 over
2% Vz, ..., 2,), whereU is adim ZP ™ Y[z, .. ., z,,]-sized vector of unknowns.

In fact, the polynomialsy®~1) have full rank wheny ranges ovelZ,. Moreover, in what is the
main part of our proof, we show in Lemnjii 3 that whenever the sgay?—1) for the sampley is not
Zg"_l)[:nl, ..., T,], our sampling process furnishes with constant probakdityectory € Z; such that
y®=1) is linearly independent from thg?—1) for the previously sampleg. This immediately implies that

if our sample size is of the order of the dimensiorZdt [z1, . .., z,,], the polynomialgy®~1) are of full
rank with high probability. When the polynomials have fuhk, the linear equationg?~ - U = 1 have
exactly one solution which ig*. From this unique solution one can easily recover a veetsuch that
v* = u*. Sinceu is of the formav, for some0 < a < p, the translation vector can be found by checking
the (p—1) possibilities.

The following combinatorial lemma is at the basis of the eomess of our procedure.

Lemma 2 (Line Lemma). Lety,z € Z; and letL,, = {(z + ay)?Y : 0 < a < p—1}. Then
y®=Y € Span(L. ).

Proof. Let M, , = {z(FyP~1=k) . 0 < k < p — 1}. ClearlySpan(L. ) is included inSpan(M. ). We
claim that the inverse inclusion is also true since the deteant of L, , in M, , is non-zero. Indeed, it

is (Hz;é (”;1)) V(0,1,2,...,p — 1), whereV denotes the Vandermonde determinant. The lemma now
follows becausé/, , containsy?~ 1. ]

Since the proof of the following proposition uses similagad as the proof of the Line Lemma, it is
omitted.



Proposition 3. Z\* V[zy, ..., z,] is spanned by®~Y asy ranges ovetZ?.

We are now ready to prove our main lemma.

Lemma 3. Letu € Z, u # 0 and W be a subspace (ﬁép_l)[acl, L ap). WeselR = {y e Zn - yP~D €

W} Fork=0,....p—1,letVy = {y € Z0 :y-u=k}and Ry = RO Vi. £ W # Z¥ V[, ... 2],
then|Ry|/|Vi| < (p— 1)/pfork=1,....p— 1.

Proof. SinceWW # fo’_l)[xl, ..., xy], Proposition[]3 implies thak # Z,,- We consider two cases. In
the first case}y C R. This implies thatR; is a proper subset df;. Choose any € V; \ R;. Then by
Lemma[p, in every coset ofy> there is an element outside &f A coset of<y> contains exactly one
element from eacl,, k = 0,...,p — 1. HenceU,,V}, is partitioned into equal parts, each part of size
p — 1, by intersecting with the cosets efy>. In each part, there is an element outsideRof Therefore
|Uk¢0Rk|/|Uk7§0Vk| < (p—2)/(p—1). Now observe thaR;, = {ky : y € Ry} fork =1,...,p— 1.
Therefore the set®), have the same size, and the valligg|/|V| are the same fak = 1,...,p — 1. Thus
|Rk|/IVkl < (p—2)/(p—1)fork=1,...,p— 1, and the statement follows.

In the second cas&) Z R. Therefore, there is an element V;\ Ry. Theneveryy, k =0,...,p—1,
is a union of cosets ofy>. The Line Lemma below implies that every cosekaf> contains an element
outside ofR. This proves thatRy|/|Vi| < (p —1)/pfor k =1,...,p — 1. This completes the proof of the
lemma. |

We now specify the algorithriiranslation finding and prove that, with high probability, it finds the
hidden translation in quantum polynomial time.

Translation finding/ (Z7)

0. If fo(0) = f1(0) then outpud.

-2

N« 13p(" 7).
Fori =1,...,N do(z;,b;) « Fourier sampling/ (Z! x Zy).
{yl,... 7y]\/[} < {ZZ' : bi = 1}
Fori=1,...,MdoY; « y®,
Solve the system of linear equatioris- U = 1,..., Yy - U = 1.
If there are several solutions then abort.

Letl < j < n be such that the coefficient mg?_l is1inU.

Letv = (v1,...,v,) € Z; be such that; = 1 andwvy is the coefficient okax;’_z in U for k # j.
Find0 < a < p such thatfy(0) = f1(av).

. Outputav.

© o N g A~ wbdh R

=
o

Theorem 1. For every prime numbep, every integem > 1, and every functiory having a translation
in Zy, Algorithm Translation Finding f(Z;}) aborts with probability less tham/2, and when it does not
abort it outputs the translation of. The query complexity of the algorithm@p(n + p)P~1), and its time
complexity ig(n + p)°®),

Proof. Because of Step 0 of the algorithm, we can suppose w.l.cagithik translation of f is non-zero.

If the algorithm does not abort, théh = «* is the unique solution of the system in Step 5. When the
coefficient ofxf_l is1inU, thenu; # 0. Also, u;, = u;vy, for everyk. Thus,u = u;v andw is found in
Step 9 fora = u;.

From Lemmd]1, the probability th&tourier samplingf(Zg x Z9) outputs(y, 1) for somey is 1/2.
Therefore the expected value df is N/2, andM > N/3 with probability 1 — e=V/1® < 1/4 because of
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Chernoff bound. If the systefi, ..., Y3, has full rank, then it has a unique solution. By Lemifjas 1[and 3,
the expected number of linear equations that guaranteghbatystem has full rank 'm(”;_pzz). Since
N/3 > 4p(”;§2), the solutionU is unique with probability at least/4 using Markov’s inequality. Thus,

the total probability of aborting is less thap2. |

Corollary 1. Letp be a fixed primeHIDDEN TRANSLATION in Z; can be solved in quantum polynomial
time.

Proof. We perform two modifications in Algorithfiranslation finding . First, to get errok, the integerV

is multiplied byO(log(1/¢)). Moreover, we assumed in the algorithm that there is anefacl = (fo, f1),

that is the functionsy and f; can be quantumly selected. This is not possible in generahvffiand f;

are given by two distinct oracles. Therefore we replace tiagle acces$r)|b)|0)g — |x)[b)|fy(x)) by
|2)10)10) 510) g = [2)[b)] fo(2))| f1-b(—=1)).

With this type of oracle access the algoritfiiranslation finding performs just as well.

Let us now show how to simulate this new oracle access. Ffonb)|0)¢|0)g we compute
|(-1)°z)|b)]0) 4|0) g, and then we calfy and getj(—1)°z)[b)| fo((-1)°z)) 4|0) . We multiply the first register
by (—1) and call f; which gives|(-1)*T12)[b)| fo((-1)°z)) ¢| f1 ((-1)*F1z)) 5. Finally, we multiply the first
register by(—1)*1, and swap the last two registers whes 1. |

Since there is a quantum reduction frombiHEN SUBGROUP to HIDDEN TRANSLATION for Z; x
Zy [EHOQ], we obtain the following corollary.

Corollary 2. Letp be a fixed primeHIDDEN SUBGROUPIN Z; x Z can be solved in quantum polynomial
time.

The algorithmTranslation finding can also be extended to solv&k®T COSETIn Z;,.

Corollary 3. Letp be a prime. Let be a group action ofZ;. Whent = Q(p(n + p)P~1log(1/¢)),
ORBIT COSETIN Z7! for o can be solved in quantum tinfe + p)°®) log(1/e) with error e.

Proof. Let (|¢o)®", |#1)®") be the input of @BIT COSET. We can suppose w.l.o.g. that the stabilizers of
|¢o) and|¢;) are trivial. Indeed the stabilizers can be computed by Fsitipa[]. If they are different then
the algorithm obviously has to reject, otherwise we can viotke factor grou; /G 4.y = Zg', for some

n' <n.

Forb = 0,1, let f, be the injective quantum function a# defined by|f,(z)) = |z - ¢), for every
x € G. If the orbit coset of |¢pg), |¢1)) is empty, thenf, and f; have distinct ranges. Otherwise the orbit
coset of(|¢o), |¢1)) is a singleton{w}, and( fo, f1) have the translation.

The algorithm for GBIT COSET on input (|¢g)*", |¢1)®") is the algorithmTranslation finding on
input f = (fo, f1) with a few modifications described below. The oracle acaegss modified in the same
way as Corollanf]1. We simulate ti# query|z)[b)|0) 4|0) ¢ using thei copy of (|¢o), |¢1)). The last two
registers are swapped with,)|#1_5), and then we let act on the|¢,) and(—z) on |¢p1_p).

The equality tests in steps 0 and 9 are replaced by the swi{B@#&/W01,[GCOlL] iterated (log(1/¢))
times. Finally, N is multiplied by O(log(1/¢)), and the algorithm rejects whenever the algorithm
Translation finding aborts or there is no solution in steps 5 and 9. |

4 Orbit superposition

The purpose of this section is to show th&t#T SUPERPOSITIONIS reducible to &BIT COSETIn solvable
groupsG. The proof will be by induction along a composition series50fThe induction step is based on
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the technique of{[Wat(1] to create a uniform superpositibelements ofG. One way of stating Watrous’s
result is that it solves ®B81T SUPERPOSITIONfoOr the case of the special action wh@racts on itself by left
multiplication. More precisely, the induction step uses fibllowing lemma.

Lemma 4. Let K be a finite group andv be a group action of onT'. Let L < K such thatK'/L is cyclic
of prime orderr, and |¢) € T. Given an element € K — L, the number and |¢)|L - ¢)*", realizing
|9)|K - ¢)®~V | is reducible toORBIT COSETIn K for o with error expansionO(t), for every positive
integert.

Proof. The analysis of the algorithm will distinguish between tveses: case one is whéfy, < L, and
case two is wher(|,, C L. In the first case, for everzy € G, |z (L-¢) = |K-¢), and in particular,

|L-¢) =|K - ¢). Inthe second casek - ¢) = fz Y1zt (L - ¢)), since the order is prime.

The algorithm first computesscopies of 7 3777 L |i)|2" - (L - ¢)), from thet copies of| L - ¢). We want
to disentangle the first registers using Watrous’s methoeIaW)Iy the quantum Fourier transform o%gr
in these registers. In the first case we obtain the stajer - #))®!, and in the second case we obtain the
state(% Z;;é 17)[1;))®", where|t;) = f S aw? |2 (L - ¢)), andw, is a fixed primitiver®-root of
unity.

We now describe the rest of the algorithm by specifying hdvehiaves on the terms of the above tensor
products. Letjo) (Vo) |i1)|¥j) - - - [5i—1)|¥j,_,) be such a term. If all the valugsare0 then the algorithm
does nothing. Observe that if this happens, we already hagpies of the desired superpositiohi - ¢),
independently of which case we are in. Otherwisejldte the first non-zerg. Note that this can only
happen in case two. We swéf)|v;,) and|;j’)|«;), and record the valug’ in an ancilla register. For
convenience of notation, we continue to refer to the first tegisters asjo)|+/j,). Thus, we have ensured
thatjo # 0. Using|«;,) our purpose will be to cancel the phases of all the othersstaé for which j # 0.
Observe thall - ¥;,) = [, for everyl € L (and hence for every € K|y), and|z - ¢j,) = w;j°|wj0>.
Therefore if we seff = j(jo)‘} mod r for somej # 0, then, for everyi € {0,...,r — 1}, € L, and
k€ Kigy, [(Z11k)) - 4bjo) = wr 7 tz0).

We now complete the reduction by computifag ¢, )| K - ¢) from |¢)|1;,)|¥;), whenj ## 0. Note
thatif j = 0, [+);) is already equal tK - ¢). For every staté'l - ¢) of [;), we find the coset'/ K|, using
ORBIT COSETINn K for |2'] - ¢) and|¢). Let z*lk be some representative of the coset whiere K. We
let (2'1k)7 act on|y;,) and reverse the previousR®IT COSET procedure. This realizes the transformation
|6 1hjo) |2°L- @) = wr ™ |)[Whjo) |20 - ¢). The effect onle) (s, )[5) is |9)[vjo)| K - ¢). Since the first
pair of registers remains unchanged, the process can bateepir the other states, and therefore we get
|&) |Go) [Vio ) ld) | K- @) ... |ji—1)| K - ¢), together with some garbage in the ancilla register.

|

Theorem 2. Let G be a finite solvable group and let be a group action ord’. Let|¢) € I'. Given
| )@l ealizing|¢) |G - ¢)®* is reducible toORBIT COSETin subgroups of? for o with error
expansiorO (s log|G| + log?|G]).

Proof. Let us recall that the grou@@ can be given with elements and primes;, fori =0, ..., m—1, such
thatG has a composition seri€s= Go> G >...> G, = {1}, whereG;/G;+1 is cyclic of orderr; and
is generated by;G;+1. By induction, fori = m downtoi = 0, we will produce the statg))|G; - ¢>®(s+i).
Fori = m, by the hypothesis we have at least- m + 1 states|¢) = |G, - ¢) sincem < log|G]|.

Assume now that we have) ands + i copies of the stati; - ¢). By applying Lemmd]4 withk = G;_1,

L = G;, z =z, andr = r;_1, we gets + ¢ — 1 copies of the stat&;_; - ¢). Wheni = 0, we obtain
|6)|G - )

|



5 Orbit coset self-reducibility

This section is based on the following theorem stating thducibility of OrRBIT COSET in G to
ORBIT COSET in proper normal subgroups @f under some conditions. Given a group actworof G
on a finite sel” of mutually orthogonal quantum states, we define for evepp@r normal subgrouly <« G
the group actionvy of G/N on{|N - ¢) : |¢) € '} by an(zN,|N - ¢)) = |z - (N - ¢)), for everyz € G
and|¢) € I'. Note that this action is independent of the coset reprateatchosen.

Theorem 3. Let G be a finite group and lelv <« G, N # G be solvable such that?, N and G/N are
black-box groups with unique encoding. lebe a group action ofy and lets > 1 be an integer. When
t = Q(s + log|G|), ORBIT COSET (resp. STABILIZER) in G for o is reducible toORBIT COSET in
subgroups ofV for « and ORBIT COSET (resp. STABILIZER) in G/N for (ay)® with error expansion
O(slog|G| + 1og?|G]).

Proof. We first prove the statement for ther&ILIZER reduction. The proof for the RBIT COSET
reduction uses the result for8BILIZER . This is indeed legitimate sincerSBILIZER is the special case of
ORBIT CoseTwhen the two inputs are identical.

Let |¢)®" be an instance of BBILIZER. lts stabilizerH is the same as the stabilizer |gf). First we
computeO(log|N|) generators for the intersectidify = H N N using SABILIZER in N for « in quantum
polynomial time. Then we usefBIT COSETIn N to constructd; < G which in fact will turn out to be
H. The properties which will ensure that equality &g < H; < H andH;N/N = HN/N. Indeed, the
first property clearly implies that’; " N = H N N, which together with the second one gives that= H
from the isomorphism theorem.

To constructd; we add toH,, generators i of H N/N. The construction proceeds in two steps. First,
we find a sel” C G which, when its elements are considered as coset reprégestaontains a generator
setforHN/N. Then, for every cosetN wherez € V, we find a coset representativezdf in H. This step
is achieved via a reduction toRBIT COSETIn N. The collection of those representatives dhgtogether
generate the desired subgrotp.

The stabilizer of NV - ¢) for ay in G/N is HN/N. Therefore findind/ is reducible to $SABILIZER in
G/N for (ax)® oninput| N - $)®°. By Theoren{]2, creating this input is also reducible ®BDr COSETIn
subgroups ofV for « on inputs + |log|G|| + 1 copies of|¢). Note that the size dof is O(log|G/N]|).

We describe now how to find, usingRBIT COSETIn N, for eachz € V, an element: € N such that
zn € H. Fix z € V. We can construdip’) = |21 - ¢) using a copy of¢). In the subgroupV, the states
|¢’) and|¢) have the orbit cosetH,. Thus the cosetH, can be found using ®BIT COSETIn N for a.

We now turn to the proof of the RBIT COSET reduction. Let(|¢o)®", |41)*") be the input of
ORBIT COSET. Their orbit coset is identical to the orbit coset @), |¢1)), and it is either empty or
uG\g,, for someu € G. We computel = G|, using the above construction. When the orbit coset of the
input is empty, the statésV - ¢)“* and|N - ¢1)®® have also empty orbit coset. Otherwise they have the
orbit cosetu H N/N.

By Theoren{P, the constructions of statéé - ¢o)®* and|N - ¢1)®® are reducible to @BIT COSET
in N for a on inputss + |log|G|] + 1 copies of|¢y) and|¢1). Then using @BIT COSETIn G/N for
(an)® ininput | N - ¢o)®® and |N - ¢,)®®, we reject if the inputs have empty orbit coset, or we find the
coset(uHN)/N, that is an element € uH N.

Using OrRBIT COSETIn IV, we can find an element € N such thawn € «H by the method already
used in the $ABILIZER reduction. We construct the stdt&)) = [v=1 - ¢g) using one copy of¢o). Let us
denoteH, = H N N. Since in the subgroupy, the stateg¢(,) and|¢;) have the orbit cosetH,, where
n € N is such thabn € uH, we complete the proof usingr®I1T COSETIN V. |
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Theorem 4. Let G be a smoothly solvable group and let be a group action ofG. Whent =
(1og®M|G|) log(1/¢), ORBIT COSET can be solved irG for of in quantum timepoly (log|G|) log(1 /)
with error .

Proof. As G is smoothly solvable, it has a smooth selies- Go > G1 > ... G—1 > Gy, = {1}, where
m is bounded(=; /G, is either elementary abelian of bounded exponent or of sigdqmarithmic in the
order ofG. Observe that we have a cyclic prime power decompositioadtf éactor grougr; /G, and for
this representation, we have a black-box oracle for thememtion ofG; /G;11 on{|Git1 - ¢) : |¢) € T'}.
The proof is by induction om:. The casen = 0 is trivial. For the induction, we can efficiently solve
ORBIT COSETIn the factor group=,/G1: if it is of polylogarithmic size we just do an exhaustive s#a
otherwise we apply Corollarf] 3. Therefore Theorfm 3 red@gsIT COSETin G to ORBIT COSETIin
subgroups of+;. Any subgroupK of G; has a smooth series of length at most 1, since the intersection
of a smooth series fai#; with K gives a smooth series féf. The running time of the overall procedure is
(log|G|)°™ log(1/e). n

Theorem 5. Let G be a finite solvable group having a smoothly solvable comiougand leta be a group
action of G. Whent = (log”("|G|)log(1/¢), STABILIZER can be solved irG for o in quantum time
poly(log(|G|) log(1/¢) with error e.

Proof. By Theorem[|3, $ABILIZER in G is reducible to $ABILIZER in G/G’' and CRBIT COSET in
subgroups of7’. The factor groug7 /G’ is abelian and subgroups 6f are smoothly solvable. Therefore,
from Propositior{]1 and Theorefh 4 the statement follows. [ |

Since, by Propositiof] 2, t8DEN TRANSLATION and SABILIZER are respectively reducible to
ORrBIT CoseTand SABILIZER, we get similar results for these two problems.

Corollary 4. HIDDEN TRANSLATION can be solved in smoothly solvable groups in quantum poliailom
time. HIDDEN SUBGROUP can be solved in solvable groups having a smoothly solvablantutator
subgroup in quantum polynomial time.
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