
Embedding logical functions
into the Chimera graph

Katalin Friedl1

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

H-1111 Budapest, Műegyetem rakpart 3.,
Hungary

friedl@cs.bme.hu

László Kabódi1

Department of Computer Science and
Information Theory

Budapest University of Technology and
Economics

H-1111 Budapest, Műegyetem rakpart 3.,
Hungary

kabodil@cs.bme.com

Abstract: The Chimera graph is used in the D-Wave quantum annealer machines. Although
there is a debate whether these machines are truly quantum, it is still meaningful to investigate
the corresponding computational model. In this paper we show a method to embed some
logical functions into the Chimera graph which can be used to solve the SAT problem using
a quantum annealer.

Keywords: adiabatic quantum computation, Chimera graph, D-Wave Systems

1 Introduction

Quantum computing is a promising field of algorithmic research. The best known results are the algo-
rithms of Grover and Shor. Grover’s search finds a marked element in a list of N unordered elements in
only O(

√
N) quantum steps and Shor’s algorithm finds a prime factor of a composite number in expected

polynomial time.
The model of quantum computation that is used most of the time, and also in these two famous

algorithms, is the circuit model when the algorithm is built up from a small set of quantum gates,
similarly to the classical model that is based on a basic set of Boolean gates.

Adiabatic computing [5] is a continuous model for quantum computations. It uses a physical process
to perform quantum annealing. The problem to be solved is phrased as an optimization problem. The
algorithm starts in an initial state Hi that should be an easily obtained ground state of the system.
During the computation the starting Hamiltonian Hi evolves adiabatically, slowly changing but staying
in ground state to reach Hp. The solution is encoded in Hp. In this type of computation the time depends
on the physical process, and a challenge is to define (and create) the right Hamiltonians. It was shown
in [1] that this adiabatic model is equivalent to the gate model.

Currently there is only one type of commercially available computer based on this idea, produced by D-
Wave Systems, although there are doubts whether these machines really perform quantum computations.
However, their structure provides an interesting computational model. In this model we do not have to
deal with the Hamiltonians, the main task is to embed problems into special type of graphs (Chimera
graphs).

Such embeddings are given for the general or this special adiabatic model in a few papers [2, 4, 6, 7].
They show how to represent for example an input graph in this model.

In paper [3] the first few NP-complete problems of Karp are embedded into the general adiabatic
setting. Here the 3SAT problem is handled by reduction from the maximum independent set problem
using the general adiabatic framework.

1Research is supported by OTKA-108947.

157



Our goal in this paper is to show a direct embedding of logical functions into the Chimera graph,
specifying a possible setting for the weights of the graph.

Section 2 describes the architecture (Chimera graph), the parameters and the discrete optimization
problem arising in the model of D-Wave machines. Section 3 describes the general methods used in our
approach. Section 4 shows how to use these to compute the OR function of n bits, the next section
describes the case of AND. Section 6 sketches how to put these together to obtain an embedding of any
CNF formula.

2 The programming model of the D-Wave machine

The underlying optimization problem is the quadratic unconstrained binary optimization (QUBO) pro-
blem. For this a graph is given on N nodes, its edge set is denoted by E. The nodes and edges have
weights αi and βi,j , respectively. In the corresponding QUBO problem there is a {0, 1} variable zi to

each node and the goal is to find the minimum of
N�
i=1

αizi +
�

{i,j}∈E

βi,jzizj .

The hardware in the case of D-Wave machines uses variables yi ∈ {−1,+1}, but it is easy to transform
from zi to yi and vice versa. We will mostly use {0, 1} variables, but some ideas are easier to see in
{−1,+1}.

In the case of D-Wave the underlying graph is not a complete graph. This makes formulation of
problems in this setting more challenging. The computer uses a Chimera graph, which is an m×m grid
of complete bipartite graphs Kn,n. (An existing choice is m = 12, n = 4.) Figure 1 shows a Chimera
graph with a 3 × 3 grid and K4,4 (a 3-4-Chimera graph). Programming the machine means setting the
constants αi and βi,j . The hardware then finds the minimum of the QUBO and outputs an optimal
choice for zi.

Figure 1: A 3-4-Chimera graph. Image from [8].

In a Chimera graph a node can be identified using 3 indices. The first two describe the position in
the grid, the third gives its place in the corresponding bipartite graph. In the Kn,n we number the nodes
starting on the left side from top to bottom and continuing on the right side from top to bottom. For
example x2,3,5 is in the second row third column of the grid and the fifth node of the bipartite graph
(that is q48 in Figure 1).

158



Using this notation the set of nodes is {xi,j,k | 1 ≤ i, j ≤ m, 1 ≤ k ≤ 2n}. There are three kinds of
edges in the graph. There are the edges of the complete bipartite graphs. The other two kinds are going
between bipartite graphs. One type is the vertical connections, where xi,j,k is connected to xi−1,j,k and
xi+1,j,k if k ≤ n, and 2 ≤ i ≤ m−1. The first and last one have only one vertical edge, x1,j,k is connected
to x2,j,k and xm,j,k is to xm−1,j,k. The other type is the horizontal connections, where xi,j,k is connected
to xi,j−1,k and xi,j+1,k if k > n and and 2 ≤ j ≤ m− 1. The first and last one have only one horizontal
edge, xi,1,k is connected to xi,2,k and xi,m,k is to xi,m−1,k. Notice that only the nodes on the left side of
the Kn,n have vertical edges and the nodes on the right side have horizontal ones.

In this area, embedding a graph G into a graph H means that for every vertex v of G there is a subset
Xv of the vertices of H with the properties that for different vertices the sets Xv are disjoint, Xv induces
a connected graph in H, and if there is an edge in G between v and w then there is an a ∈ Xv and a
b ∈ Xw that a and b are connected be an edge in H.

One can embed a complete graph in this structure [6] which is useful to solve graph problems and
also makes the definition of QUBO problems easier. But if the problem does not need a complete graph,
there may be embeddings with less overhead or a cleaner design.

3 Overview of the method

The idea behind the method is to create a modular design, where one can take the appropriate modules
and put them together to form arbitrary logical functions. Before we describe selected gates, we discuss
the broad structure of our method.

Definition 1 A module is a self-contained implementation of a small logical function.

In our case each module is a Kn,n. Every node has a value zi ∈ {0, 1}.

Definition 2 A state of a module is the value of its nodes.

Definition 3 The value of a state is
N�
i=1

αizi +
�

{i,j}∈E

βi,jzizj where zi are the values of the nodes and

E is the set of edges of the module.

On the left side of the module there are three kinds of nodes: input nodes, one output node and some
or none other nodes. The other nodes are not used in the module, they are only there because of the
hardware. The input nodes correspond to the variables of the logical function and the output node to
the value of the function.

The value of the output node is called the output of the module. The goal is to set the weights of the
module such that the value of the module is minimal if and only if the output is equal to the value of the
logical function.

Definition 4 A state is valid if the output is the value of the function and the value of any node xi,j,k

on the right side is equal to the negated value of xi,j,k−n on the left side. Otherwise the state is invalid.

Definition 5 We call a state true if it is valid and the value of the function is true. We call it false if
it is valid and the value of the function is false.

For an example let us examine the



z1 z4
z2 z5
z3 z6


 state of a K3,3 OR module, where z1 and z2 are the

inputs and z3 is the output. The state



0 1
1 0
1 0


 is true,



0 1
0 1
0 1


 is false and



0 1
1 1
1 0


 is invalid.

In our construction the weights of an edge or node depends only on its type. Let us assume that on
the left side the last node is the output node, the others input nodes. We use the following parameters:

159



• a: the weight of all edges between xi,j,k and xi,j,k+n where k ≤ n

• b: the weight of all edges between xi,j,k and xi,j,� where k �= �, k < n, � > n

• c: the weight of all edges between xi,j,k and xi,j,2n, where k < n

• d: the weight of all edges between xi,j,k and xi,j,n, where k > n and k �= 2n

• L: the weight of all nodes xi,j,k, where k ≤ n

• R: the weight of all nodes xi,j,k, where k > n

More precisely we work with modules that are K3,3, where node number 1 and 2 are input nodes and
3 is the output node. For the case of larger Kn,n the construction can be easily transformed by setting
all the weights not included in the K3,3 to be 0.

The optimization problem searches the minimum state of the QUBO problem. Our goal is to set
the value of previous parameters such that all true states have the same Wt value, all false states have
the same Wf value and the value of any invalid state is at least Wi. Also we want Wt = Wf − 1 and
Wt ≤ Wi − k, to have a k ≥ 2 gap between the true states and the invalid states.

There might be technical constraints on the values of the parameters, but we will disregard them.

4 Embedding a logical OR

First, let us describe a module for an OR of two logical variables. It in not difficult to check that the
following parameters satisfy the constraints using k = 2: a = 10, b = −2, c = 6, d = 2

3 , L = −3, R = − 8
3 .

Using these parameters with a K3,3 the value of the true states are −9, the false state is −8 and the
invalid states are at least −7.

Attaching two modules together is a simple additive step. To obtain an OR function with 3 variables
we use two neighbouring modules of the grid. The first represents r1 = p1∨p2 and the second r = r1∨p3.

In order to do this one has to be able to copy the value of a node to another node. Because the QUBO
is a simple sum of the different products, one can simply set the value of a few external edges, without
modifying the inside of a module.

To copy the result to a new node, we simply use a sufficiently large positive or negative edge, and
compensate its effect on the connected nodes. It is easier to see how this works with variables yi ∈
{−1,+1}. In this case to force two connected nodes to be the same, we must use a negative edge, otherwise
a positive one. For the {0, 1} case, we first transform the variables to {−1,+1}, then use the appropriate
edge and we get the weights needed to the {0, 1} case. By this method the edge weight wi,j of the {−1,+1}
case transforms to the case zi, zj ∈ {0, 1} as follows: (2zi−1)(2zj−1)wi,j = 4zizjwi,j−2(zi+zj)wi,j+wi,j .
The last term does not depend on the variables zi, so it is not important from the point of view of
minimalization. The others mean the we need to add − 1

2 times the weight of the edge to the weight of
nodes it connects. As before, wi,j is negative when copying and negative for negation.

Because we set the value of the false state to be one more than the value of the true states, we must
compensate for it, so we add one to the weight of the edge that copies the result of the first module to the
second one. This ensures that the minimum states include the ones, where there are some false modules,
but the overall value of the function is true.

5 The logical AND

The logical AND function can be obtained from the logical OR and negations. But we think the design
is cleaner if we make a separate AND module.

Applying the same constraints to the logical AND function, we obtain the following parameters:
a = 10, b = − 2

3 , c = 1, d = 5, L = −3, R = − 8
3 . We deliberately chose a, L and R the same as in the case

160



of OR. Using these parameters with a K3,3 the value of the true states are −9, the false state is −8 as
before, and the invalid states are at least −6.6667.

Attaching the modules together is almost the same as in the OR case. The main difference is that in
the AND function the result is only true if all the variables are true, so we do not need to add one to the
weight of the edge that copies the result. (We can, the results will be the same, but we do not need to.)

6 The SAT problem

Embedding a general SAT problem using the previous modules is easy if the grid is large enough. The
logical function has to be in CNF form. Then each clause gets its own column in the grid.

Each variable of the formula has its own row. For a logical variable pi all xi,j,1 correspond to pi and
xi,j,n+1 to ¬pi. If the clause in the jth column needs the negated version of the variable, then instead
of copying the value (by negative edge weight) to that column we use positive edge weight to obtain the
negation of the variable.

To implement the whole CNF formula there are three kinds of modules. The OR module, the AND
module, and a copy module. The copy module keeps the value of one of its inputs, and copies the other
to its output.

During this process, because the kth node of one bipartite graph is only connected to the kth node
of the neighbouring bipartite graphs, the input and the output must switch places alternately. With the
help of this, in a column we can move the partial results to the literals included in that clause where the
OR module can be applied.

The results of the OR modules are copied into one row, in which we use AND modules. One of the
input nodes of these AND modules, coming from the OR modules are always at the same position. The
other input node that corresponds to the the result of the previous AND and the output node switch
places alternately as we move from one AND module to the next.

7 Conclusion

In this paper we proposed a framework for constructing modules from small logical functions and applied
it to construct OR and AND modules. From these, we made an embedding for any CNF into the Chimera
graph. For a CNF containing n variables and m clauses, we need a Chimera graph with n+1 rows and m
columns, so a max(n+1,m)-3-Chimera graph. This embedding is not optimal, the number of nodes can
be reduced, but our goal was not to find the optimal embedding, rather a clean and simple one. Later
research should be done to optimize these results.

References

[1] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. LLoyd, O. Regev, Adiabatic quantum
computation is equivalent to standard quantum computation, SIAM J. Computing Vol. 37, pp
166-194 (2007)

[2] V. Choi, Minor embedding in adiabatic quantum copmutation: 1. The parameter setting problem
Quantum Information Processing Vol.7, pp. 193-209 (2008)

[3] V. Choi, Adiabatic quantum algorithms for the NP-complete maximum weight independent set,
exact cover and 3SAT problems arXiv:quant-ph/1004.2226 (2010)

[4] C.S. Claude, E. Claude, M.J. Dinneen, Guest column: Adiabatic quantum computing chal-
lenges ACM SIGACT News Vol.45, pp 40-61 (2015)

[5] E. Fahri, J. Goldstone, S. Gutmann, M. Sipser, Quantum computation by adiabatic evolution,
arXiv:quant-ph/0001106 (2000)

161



[6] C. Klymko, B. D. Sullivan, T. S. Humble, Adiabatic quantum programming: Minor embedding
with hard faults Quantum Information Processing Vol.13, pp 709-729 (2014)

[7] E. G. Rieffel, D. Venturelli, B. OGorman, M. B. Do, E. M. Prystay, V. N. Smelyan-
skiy, Vadim N, A case study in programming a quantum annealer for hard operational planning
problems Quantum Information Processing Vol.14, pp 1-36 (2015)

[8] V. N. Smelyanskiy, E. G. Rieffel, S. I. Knysh, C. P. Williams, M. W. Johnson, M. C.
Thom, W. G. Macready, K. L. Pudenz, A near-term quantum computing approach for hard
computational problems in space exploration. arXiv:quant-ph/1204.2821 (2012)

162


