
Quantum Walks

András Gilyén

ELTE kvantum-infó szeminárium 2020 szeptember 24

Outline

I Coined quantum walks

I Szegedy quantum walks

I Continuous-time quantum walks

1 / 16

Coined quantum walks

2 / 16

(Classical) Random walk on the line

In each step we toss a coin:

I if heads we go one step left
I if tails we go one step right

3 / 16

(Classical) Random walk on the line

In each step we toss a coin:

I if heads we go one step left
I if tails we go one step right

3 / 16

The distribution after T steps is roughly N(0,
√

T)

I The probability of being further than ∼
√

T is small.
I Being at some specific point of the interval [−

√
T ,
√

T] has chance ∼ 1/
√

T , i.e.,
the distribution is roughly uniform on this interval.

4 / 16

The distribution after T steps is roughly N(0,
√

T)

I The probability of being further than ∼
√

T is small.
I Being at some specific point of the interval [−

√
T ,
√

T] has chance ∼ 1/
√

T , i.e.,
the distribution is roughly uniform on this interval.

4 / 16

Quantum walk on the line

One step of the walk: SC i.e., first apply C and then apply S
I Quantum walk is deterministic and reversible!
I Only the measurement introduces probability.

5 / 16

Quantum walk on the line

One step of the walk: SC i.e., first apply C and then apply S
I Quantum walk is deterministic and reversible!
I Only the measurement introduces probability.

5 / 16

Distribution after T steps – upon measurement

Main differences
I Peak around T/

√
2→ ballistic spreading

I Between −T/2 and T/2 the distribution is ∼ uniform→ quadratically faster mixing

6 / 16

Distribution after T steps – upon measurement

Main differences
I Peak around T/

√
2→ ballistic spreading

I Between −T/2 and T/2 the distribution is ∼ uniform→ quadratically faster mixing
6 / 16

Szegedy quantum walks

7 / 16

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

Pvu = Pr(step to v | being at u) =
wvu∑

v′∈U wv′u

8 / 16

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

Pvu = Pr(step to v | being at u) =
wvu∑

v′∈U wv′u

A unitary implementing the update

U : |0〉|u〉 7→
∑
v∈V

√
Pvu|v〉|u〉

8 / 16

Discrete-time quantum / random walks
Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

Pvu = Pr(step to v | being at u) =
wvu∑

v′∈U wv′u

A unitary implementing the update

U : |0〉|u〉 7→
∑
v∈V

√
Pvu|v〉|u〉

Generic coin operator

S := SWAP

C := U((2|0〉〈0| ⊗ I) − I)U†

8 / 16

Discrete-time quantum / random walks
Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

Pvu = Pr(step to v | being at u) =
wvu∑

v′∈U wv′u

A unitary implementing the update

U : |0〉|u〉 7→
∑
v∈V

√
Pvu|v〉|u〉

How to erase history? The Szegedy quantum walk operator:

W ′ := U† · SWAP · U

W := U† · SWAP · U((2|0〉〈0| ⊗ I) − I)

8 / 16

Understanding Szegedy’s quantum walk operator
For simplicity let us assume Puv = Pvu, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: (〈0| ⊗ I)W ′(|0〉 ⊗ I) = P

Proof:

〈0|〈u|W ′|0〉|v〉 = 〈0|〈u|U† ·SWAP ·U|0〉|v〉 =

∑
v′∈V

√
Pv′u|v ′〉|u〉

†SWAP

∑
u′∈V

√
Pu′v |u′〉|v〉

Multiple steps of the quantum walk: (〈0| ⊗ I)W k (|0〉 ⊗ I) = Tk (P)

[Tk (x) = cos(k arccos(x)) Chebyshev polynomials: Tk+1(x) = 2xTk (x) − Tk−1(x)]

Proof: Proceed by induction, observe T0(P) = IX, T1(P) = P X

(〈0| ⊗ I)W k+1(|0〉 ⊗ I) = (〈0| ⊗ I)W ′((2|0〉〈0| ⊗ I) − I)W k (|0〉 ⊗ I) =

= (〈0| ⊗ I)W ′(2|0〉︸ ︷︷ ︸
2P

〈0| ⊗ I)W k (|0〉 ⊗ I)︸ ︷︷ ︸
Tk (P)

− (〈0| ⊗ I)W k−1(|0〉 ⊗ I)︸ ︷︷ ︸
Tk−1(P)

9 / 16

Understanding Szegedy’s quantum walk operator
For simplicity let us assume Puv = Pvu, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: (〈0| ⊗ I)W ′(|0〉 ⊗ I) = P

Proof:

〈0|〈u|W ′|0〉|v〉 = 〈0|〈u|U† ·SWAP ·U|0〉|v〉 =

∑
v′∈V

√
Pv′u|v ′〉|u〉

†SWAP

∑
u′∈V

√
Pu′v |u′〉|v〉

Multiple steps of the quantum walk: (〈0| ⊗ I)W k (|0〉 ⊗ I) = Tk (P)

[Tk (x) = cos(k arccos(x)) Chebyshev polynomials: Tk+1(x) = 2xTk (x) − Tk−1(x)]

Proof: Proceed by induction, observe T0(P) = IX, T1(P) = P X

(〈0| ⊗ I)W k+1(|0〉 ⊗ I) = (〈0| ⊗ I)W ′((2|0〉〈0| ⊗ I) − I)W k (|0〉 ⊗ I) =

= (〈0| ⊗ I)W ′(2|0〉︸ ︷︷ ︸
2P

〈0| ⊗ I)W k (|0〉 ⊗ I)︸ ︷︷ ︸
Tk (P)

− (〈0| ⊗ I)W k−1(|0〉 ⊗ I)︸ ︷︷ ︸
Tk−1(P)

9 / 16

Understanding Szegedy’s quantum walk operator
For simplicity let us assume Puv = Pvu, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: (〈0| ⊗ I)W ′(|0〉 ⊗ I) = P

Proof:

〈0|〈u|W ′|0〉|v〉 = 〈0|〈u|U† ·SWAP ·U|0〉|v〉 =

∑
v′∈V

√
Pv′u|v ′〉|u〉

†SWAP

∑
u′∈V

√
Pu′v |u′〉|v〉

Multiple steps of the quantum walk: (〈0| ⊗ I)W k (|0〉 ⊗ I) = Tk (P)

[Tk (x) = cos(k arccos(x)) Chebyshev polynomials: Tk+1(x) = 2xTk (x) − Tk−1(x)]

Proof: Proceed by induction, observe T0(P) = IX, T1(P) = P X

(〈0| ⊗ I)W k+1(|0〉 ⊗ I) = (〈0| ⊗ I)W ′((2|0〉〈0| ⊗ I) − I)W k (|0〉 ⊗ I) =

= (〈0| ⊗ I)W ′(2|0〉︸ ︷︷ ︸
2P

〈0| ⊗ I)W k (|0〉 ⊗ I)︸ ︷︷ ︸
Tk (P)

− (〈0| ⊗ I)W k−1(|0〉 ⊗ I)︸ ︷︷ ︸
Tk−1(P)

9 / 16

Understanding Szegedy’s quantum walk operator
For simplicity let us assume Puv = Pvu, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: (〈0| ⊗ I)W ′(|0〉 ⊗ I) = P

Proof:

〈0|〈u|W ′|0〉|v〉 = 〈0|〈u|U† ·SWAP ·U|0〉|v〉 =

∑
v′∈V

√
Pv′u|v ′〉|u〉

†SWAP

∑
u′∈V

√
Pu′v |u′〉|v〉

Multiple steps of the quantum walk: (〈0| ⊗ I)W k (|0〉 ⊗ I) = Tk (P)

[Tk (x) = cos(k arccos(x)) Chebyshev polynomials: Tk+1(x) = 2xTk (x) − Tk−1(x)]

Proof: Proceed by induction, observe T0(P) = IX, T1(P) = P X

(〈0| ⊗ I)W k+1(|0〉 ⊗ I) = (〈0| ⊗ I)W ′((2|0〉〈0| ⊗ I) − I)W k (|0〉 ⊗ I) =

= (〈0| ⊗ I)W ′(2|0〉︸ ︷︷ ︸
2P

〈0| ⊗ I)W k (|0〉 ⊗ I)︸ ︷︷ ︸
Tk (P)

− (〈0| ⊗ I)W k−1(|0〉 ⊗ I)︸ ︷︷ ︸
Tk−1(P)

9 / 16

Understanding Szegedy’s quantum walk operator
For simplicity let us assume Puv = Pvu, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: (〈0| ⊗ I)W ′(|0〉 ⊗ I) = P

Proof:

〈0|〈u|W ′|0〉|v〉 = 〈0|〈u|U† ·SWAP ·U|0〉|v〉 =

∑
v′∈V

√
Pv′u|v ′〉|u〉

†SWAP

∑
u′∈V

√
Pu′v |u′〉|v〉

Multiple steps of the quantum walk: (〈0| ⊗ I)W k (|0〉 ⊗ I) = Tk (P)

[Tk (x) = cos(k arccos(x)) Chebyshev polynomials: Tk+1(x) = 2xTk (x) − Tk−1(x)]

Proof: Proceed by induction, observe T0(P) = IX, T1(P) = P X

(〈0| ⊗ I)W k+1(|0〉 ⊗ I) = (〈0| ⊗ I)W ′((2|0〉〈0| ⊗ I) − I)W k (|0〉 ⊗ I) =

= (〈0| ⊗ I)W ′(2|0〉︸ ︷︷ ︸
2P

〈0| ⊗ I)W k (|0〉 ⊗ I)︸ ︷︷ ︸
Tk (P)

− (〈0| ⊗ I)W k−1(|0〉 ⊗ I)︸ ︷︷ ︸
Tk−1(P)

9 / 16

Understanding Szegedy’s quantum walk operator
For simplicity let us assume Puv = Pvu, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: (〈0| ⊗ I)W ′(|0〉 ⊗ I) = P

Proof:

〈0|〈u|W ′|0〉|v〉 = 〈0|〈u|U† ·SWAP ·U|0〉|v〉 =

∑
v′∈V

√
Pv′u|v ′〉|u〉

†SWAP

∑
u′∈V

√
Pu′v |u′〉|v〉

Multiple steps of the quantum walk: (〈0| ⊗ I)W k (|0〉 ⊗ I) = Tk (P)

[Tk (x) = cos(k arccos(x)) Chebyshev polynomials: Tk+1(x) = 2xTk (x) − Tk−1(x)]

Proof: Proceed by induction, observe T0(P) = IX, T1(P) = P X

(〈0| ⊗ I)W k+1(|0〉 ⊗ I) = (〈0| ⊗ I)W ′((2|0〉〈0| ⊗ I) − I)W k (|0〉 ⊗ I) =

= (〈0| ⊗ I)W ′(2|0〉︸ ︷︷ ︸
2P

〈0| ⊗ I)W k (|0〉 ⊗ I)︸ ︷︷ ︸
Tk (P)

− (〈0| ⊗ I)W k−1(|0〉 ⊗ I)︸ ︷︷ ︸
Tk−1(P)

9 / 16

Understanding Szegedy’s quantum walk operator
For simplicity let us assume Puv = Pvu, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: (〈0| ⊗ I)W ′(|0〉 ⊗ I) = P

Proof:

〈0|〈u|W ′|0〉|v〉 = 〈0|〈u|U† ·SWAP ·U|0〉|v〉 =

∑
v′∈V

√
Pv′u|v ′〉|u〉

†SWAP

∑
u′∈V

√
Pu′v |u′〉|v〉

Multiple steps of the quantum walk: (〈0| ⊗ I)W k (|0〉 ⊗ I) = Tk (P)

[Tk (x) = cos(k arccos(x)) Chebyshev polynomials: Tk+1(x) = 2xTk (x) − Tk−1(x)]

Proof: Proceed by induction, observe T0(P) = IX, T1(P) = P X

(〈0| ⊗ I)W k+1(|0〉 ⊗ I) = (〈0| ⊗ I)W ′((2|0〉〈0| ⊗ I) − I)W k (|0〉 ⊗ I) =

= (〈0| ⊗ I)W ′(2|0〉︸ ︷︷ ︸
2P

〈0| ⊗ I)W k (|0〉 ⊗ I)︸ ︷︷ ︸
Tk (P)

− (〈0| ⊗ I)W k−1(|0〉 ⊗ I)︸ ︷︷ ︸
Tk−1(P)

9 / 16

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe ’12, Berry et al. ’15]

Suppose that U =
∑

i |i〉〈i| ⊗ Ui, and Q : |0〉 7→
∑

i
√

qi |i〉 for qi ∈ [0, 1].

Then the top-left corner (〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉 ⊗ I) is
∑

i qiUi.
In particular if (〈0| ⊗ I)Uk (|0〉 ⊗ I) = Tk (P), then

(〈0|〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉|0〉 ⊗ I) =
∑

i

qk Tk (P).

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

(〈0| ⊗ I)V(|0〉 ⊗ I)
ε
≈ P t

with using only O
(√

t log(1/ε)
)

quantum walk steps. (Proof: x t ≈
∑≈√t

k=0 Tk (x))

10 / 16

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe ’12, Berry et al. ’15]

Suppose that U =
∑

i |i〉〈i| ⊗ Ui, and Q : |0〉 7→
∑

i
√

qi |i〉 for qi ∈ [0, 1].
Then the top-left corner (〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉 ⊗ I) is

∑
i qiUi.

In particular if (〈0| ⊗ I)Uk (|0〉 ⊗ I) = Tk (P), then

(〈0|〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉|0〉 ⊗ I) =
∑

i

qk Tk (P).

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

(〈0| ⊗ I)V(|0〉 ⊗ I)
ε
≈ P t

with using only O
(√

t log(1/ε)
)

quantum walk steps. (Proof: x t ≈
∑≈√t

k=0 Tk (x))

10 / 16

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe ’12, Berry et al. ’15]

Suppose that U =
∑

i |i〉〈i| ⊗ Ui, and Q : |0〉 7→
∑

i
√

qi |i〉 for qi ∈ [0, 1].
Then the top-left corner (〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉 ⊗ I) is

∑
i qiUi.

In particular if (〈0| ⊗ I)Uk (|0〉 ⊗ I) = Tk (P), then

(〈0|〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉|0〉 ⊗ I) =
∑

i

qk Tk (P).

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

(〈0| ⊗ I)V(|0〉 ⊗ I)
ε
≈ P t

with using only O
(√

t log(1/ε)
)

quantum walk steps. (Proof: x t ≈
∑≈√t

k=0 Tk (x))

10 / 16

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe ’12, Berry et al. ’15]

Suppose that U =
∑

i |i〉〈i| ⊗ Ui, and Q : |0〉 7→
∑

i
√

qi |i〉 for qi ∈ [0, 1].
Then the top-left corner (〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉 ⊗ I) is

∑
i qiUi.

In particular if (〈0| ⊗ I)Uk (|0〉 ⊗ I) = Tk (P), then

(〈0|〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉|0〉 ⊗ I) =
∑

i

qk Tk (P).

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

(〈0| ⊗ I)V(|0〉 ⊗ I)
ε
≈ P t

with using only O
(√

t log(1/ε)
)

quantum walk steps. (Proof: x t ≈
∑≈√t

k=0 Tk (x))

10 / 16

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe ’12, Berry et al. ’15]

Suppose that U =
∑

i |i〉〈i| ⊗ Ui, and Q : |0〉 7→
∑

i
√

qi |i〉 for qi ∈ [0, 1].
Then the top-left corner (〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉 ⊗ I) is

∑
i qiUi.

In particular if (〈0| ⊗ I)Uk (|0〉 ⊗ I) = Tk (P), then

(〈0|〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉|0〉 ⊗ I) =
∑

i

qk Tk (P).

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

(〈0| ⊗ I)V(|0〉 ⊗ I)
ε
≈ P t

with using only O
(√

t log(1/ε)
)

quantum walk steps.

(Proof: x t ≈
∑≈√t

k=0 Tk (x))

10 / 16

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe ’12, Berry et al. ’15]

Suppose that U =
∑

i |i〉〈i| ⊗ Ui, and Q : |0〉 7→
∑

i
√

qi |i〉 for qi ∈ [0, 1].
Then the top-left corner (〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉 ⊗ I) is

∑
i qiUi.

In particular if (〈0| ⊗ I)Uk (|0〉 ⊗ I) = Tk (P), then

(〈0|〈0| ⊗ I)(Q† ⊗ I)U(Q ⊗ I)(|0〉|0〉 ⊗ I) =
∑

i

qk Tk (P).

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

(〈0| ⊗ I)V(|0〉 ⊗ I)
ε
≈ P t

with using only O
(√

t log(1/ε)
)

quantum walk steps. (Proof: x t ≈
∑≈√t

k=0 Tk (x))

10 / 16

Szegedy quantum walk based search
Suppose we have some unknown marked vertices M ⊂ V .

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state

∑
v∈V
√
πv |v〉 we can

I detect the presence of marked vertices (M , 0) in time O
(√

HT
)

(Szegedy 2004)

I find a marked vertex in time O
(

1
√
δε

)
(Magniez, Nayak, Roland, Sántha 2006)

I find a marked vertex in time Õ
(√

HT
)

(Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can
I detect marked vertices in square-root commute time O

(√
Cσ,M

)
(Belovs 2013)

I find a marked vertex in time Õ
(√

Cσ,M

)
(Piddock; Apers, G, Jeffery 2019)

11 / 16

Szegedy quantum walk based search
Suppose we have some unknown marked vertices M ⊂ V .

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state

∑
v∈V
√
πv |v〉 we can

I detect the presence of marked vertices (M , 0) in time O
(√

HT
)

(Szegedy 2004)

I find a marked vertex in time O
(

1
√
δε

)
(Magniez, Nayak, Roland, Sántha 2006)

I find a marked vertex in time Õ
(√

HT
)

(Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can
I detect marked vertices in square-root commute time O

(√
Cσ,M

)
(Belovs 2013)

I find a marked vertex in time Õ
(√

Cσ,M

)
(Piddock; Apers, G, Jeffery 2019)

11 / 16

Walks on the Johnson graph (Sántha arXiv:0808.0059)
Vertices: {S ⊂ N : |S | = K }; Edges: {(S,S ′) : |S4S ′| = 2}

Element Distinctness
I Black box: Computes f on inputs corresponding to elements of [n]

I Question: Are there any i , j ∈ [n] × [n] such that f(i) = f(j)?
I Query complexity: O(n2/3) (Ambainis 2003) Ω(n2/3) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: Õ(n5/4)]
I Black box: For any pair u, v ∈ V × V tells whether there is an edge uv
I Question: Is there any triangle in G?
I Query complexity: O(n13/10) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification
I Black box: Tells any entry of the n × n matrices A ,B or C.
I Question: Does AB = C hold?
I Query complexity: O(n5/3) (Buhrman, Špalek 2004)

12 / 16

Walks on the Johnson graph (Sántha arXiv:0808.0059)
Vertices: {S ⊂ N : |S | = K }; Edges: {(S,S ′) : |S4S ′| = 2}

Element Distinctness
I Black box: Computes f on inputs corresponding to elements of [n]

I Question: Are there any i , j ∈ [n] × [n] such that f(i) = f(j)?
I Query complexity: O(n2/3) (Ambainis 2003) Ω(n2/3) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: Õ(n5/4)]
I Black box: For any pair u, v ∈ V × V tells whether there is an edge uv
I Question: Is there any triangle in G?
I Query complexity: O(n13/10) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification
I Black box: Tells any entry of the n × n matrices A ,B or C.
I Question: Does AB = C hold?
I Query complexity: O(n5/3) (Buhrman, Špalek 2004)

12 / 16

Walks on the Johnson graph (Sántha arXiv:0808.0059)
Vertices: {S ⊂ N : |S | = K }; Edges: {(S,S ′) : |S4S ′| = 2}

Element Distinctness
I Black box: Computes f on inputs corresponding to elements of [n]

I Question: Are there any i , j ∈ [n] × [n] such that f(i) = f(j)?
I Query complexity: O(n2/3) (Ambainis 2003) Ω(n2/3) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: Õ(n5/4)]
I Black box: For any pair u, v ∈ V × V tells whether there is an edge uv
I Question: Is there any triangle in G?
I Query complexity: O(n13/10) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification
I Black box: Tells any entry of the n × n matrices A ,B or C.
I Question: Does AB = C hold?
I Query complexity: O(n5/3) (Buhrman, Špalek 2004)

12 / 16

Walks on the Johnson graph (Sántha arXiv:0808.0059)
Vertices: {S ⊂ N : |S | = K }; Edges: {(S,S ′) : |S4S ′| = 2}

Element Distinctness
I Black box: Computes f on inputs corresponding to elements of [n]

I Question: Are there any i , j ∈ [n] × [n] such that f(i) = f(j)?
I Query complexity: O(n2/3) (Ambainis 2003) Ω(n2/3) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: Õ(n5/4)]
I Black box: For any pair u, v ∈ V × V tells whether there is an edge uv
I Question: Is there any triangle in G?
I Query complexity: O(n13/10) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification
I Black box: Tells any entry of the n × n matrices A ,B or C.
I Question: Does AB = C hold?
I Query complexity: O(n5/3) (Buhrman, Špalek 2004)

12 / 16

Continuous-time quantum walks

13 / 16

Continuous-time quantum / random walks
Laplacian of a weighted graph

Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
The Laplacian is defined as

u , v : Luv = wuv , and Luu = −
∑

v

wuv .

Continuous-time walks

Evolution of the state:

d
dt

pu(t) =
∑
v∈V

Luvpv(t) =⇒ p(t) = etLp(0)

i
d
dt
ψu(t) =

∑
v∈V

Luvψv(t) =⇒ ψ(t) = e−itLψ(0)

14 / 16

Continuous-time quantum / random walks
Laplacian of a weighted graph

Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
The Laplacian is defined as

u , v : Luv = wuv , and Luu = −
∑

v

wuv .

Continuous-time walks

Evolution of the state:

d
dt

pu(t) =
∑
v∈V

Luvpv(t) =⇒ p(t) = etLp(0)

i
d
dt
ψu(t) =

∑
v∈V

Luvψv(t) =⇒ ψ(t) = e−itLψ(0)

14 / 16

Continuous-time quantum / random walks
Laplacian of a weighted graph

Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
The Laplacian is defined as

u , v : Luv = wuv , and Luu = −
∑

v

wuv .

Continuous-time walks

Evolution of the state:

d
dt

pu(t) =
∑
v∈V

Luvpv(t) =⇒ p(t) = etLp(0)

i
d
dt
ψu(t) =

∑
v∈V

Luvψv(t) =⇒ ψ(t) = e−itLψ(0)

14 / 16

Exponential speedup by a quantum walk

Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman: quant-ph/0209131
15 / 16

Same speed-up by Szegedy walks?

Can be reduced to the line

A =
1
3

1
√

2 0 0 0 0 0 0
√

2 0
√

2 0 0 0 0 0
0

√
2 0

√
2 0 0 0 0

0 0
√

2 0 2 0 0 0
0 0 0 2 0

√
2 0 0

0 0 0 0
√

2 0
√

2 0
0 0 0 0 0

√
2 0

√
2

0 0 0 0 0 0
√

2 1

Show that the bottom left corner of Tm(A) is 1/poly(n) large for some m = poly(n).

16 / 16

