Quantum Walks

András Gilyén

ELTE kvantum-infó szeminárium 2020 szeptember 24

Outline

- Coined quantum walks
- Szegedy quantum walks
- Continuous-time quantum walks

Coined quantum walks

(Classical) Random walk on the line

In each step we toss a coin:

- ▶ if heads we go one step left
- ▶ if tails we go one step right

(Classical) Random walk on the line

In each step we toss a coin:

- ▶ if heads we go one step left
- ▶ if tails we go one step right

The distribution after T steps is roughly $N(0, \sqrt{T})$

The distribution after T steps is roughly $N(0, \sqrt{T})$

- The probability of being further than $\sim \sqrt{T}$ is small.
- ▶ Being at some specific point of the interval $[-\sqrt{T}, \sqrt{T}]$ has chance ~ 1/ \sqrt{T} , i.e., the distribution is roughly uniform on this interval.

Quantum walk on the line

$$S = \begin{bmatrix} |n, 0\rangle \rightarrow |n-1, 1\rangle & |0, 1\rangle & |1, 1\rangle & |2, 1\rangle & |3, 1\rangle \\ |-3, 0\rangle & |-2, 0\rangle & |-1, 0\rangle & |0, 0\rangle & |1, 0\rangle & |2, 0\rangle \\ & & & \\ START \\ |n, 1\rangle \rightarrow |n+1, 1\rangle & C = \begin{bmatrix} |n, 0\rangle \rightarrow \frac{1}{\sqrt{2}} |n, 0\rangle + \frac{1}{\sqrt{2}} |n, 1\rangle \\ |n, 1\rangle \rightarrow \frac{1}{\sqrt{2}} |n, 0\rangle - \frac{1}{\sqrt{2}} |n, 1\rangle \\ |n, 1\rangle \rightarrow \frac{1}{\sqrt{2}} |n, 0\rangle - \frac{1}{\sqrt{2}} |n, 1\rangle \end{bmatrix}$$

Quantum walk on the line

One step of the walk: SC i.e., first apply C and then apply S

- Quantum walk is deterministic and reversible!
- Only the measurement introduces probability.

Distribution after *T* **steps** – upon measurement

The probability distribution of the quantum random walk with Hadamard coin starting in $|0,0\rangle$ after T = 100 steps.

Distribution after T **steps – upon measurement**

The probability distribution of the quantum random walk with Hadamard coin starting in $|0,0\rangle$ after T = 100 steps.

Main differences

- Peak around $T/\sqrt{2} \rightarrow$ ballistic spreading
- Between -T/2 and T/2 the distribution is ~ uniform \rightarrow quadratically faster mixing

Szegedy quantum walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$${\sf P}_{{\sf v}{\sf u}}={\sf Pr}({\sf step to } {\sf v}\,|\,{\sf being at }{\sf u})=rac{{\sf W}_{{\sf v}{\sf u}}}{\sum_{{\sf v}'\in {\sf U}}{\sf w}_{{\sf v}'{\sf u}}}$$

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$${\sf P}_{{\sf v}{\sf u}}={\sf Pr}({\sf step to } {\sf v}\,|\,{\sf being at }{\sf u})=rac{{\sf W}_{{\sf v}{\sf u}}}{\sum_{{\sf v}'\in {\cal U}}{\sf W}_{{\sf v}'{\sf u}}}$$

A unitary implementing the update

$$U: |0\rangle |u\rangle \mapsto \sum_{v \in V} \sqrt{P_{vu}} |v\rangle |u\rangle$$

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \Pr(\text{step to } v \mid \text{being at } u) = \frac{W_{vu}}{\sum_{v' \in U} W_{v'v}}$$

A unitary implementing the update

$$U: |0\rangle|u
angle \mapsto \sum_{v\in V} \sqrt{P_{vu}}|v
angle|u
angle$$

Generic coin operator

S := SWAP $C := U((2|0\rangle 0| \otimes I) - I)U^{\dagger}$

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \Pr(\text{step to } v \mid \text{being at } u) = \frac{W_{vu}}{\sum_{v' \in U} W_{v'}}$$

A unitary implementing the update

$$U: |0\rangle|u\rangle \mapsto \sum_{v\in V} \sqrt{P_{vu}}|v\rangle|u\rangle$$

How to erase history? The Szegedy quantum walk operator:

 $W' := U^{\dagger} \cdot \text{SWAP} \cdot U$ $W := U^{\dagger} \cdot \text{SWAP} \cdot U((2|0\rangle 0| \otimes I) - I)$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constants.

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: $(\langle 0 | \otimes l \rangle W'(|0\rangle \otimes l) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)^{\dagger} \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)^{\dagger} \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

Multiple steps of the quantum walk: $(\langle 0 | \otimes l \rangle W^k (| 0 \rangle \otimes l) = T_k(P)$ $[T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)]$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)^{\dagger} \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

Multiple steps of the quantum walk: $(\langle 0 | \otimes I \rangle W^k (| 0 \rangle \otimes I) = T_k(P)$ [$T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$] Proof: Proceed by induction, observe $T_0(P) = I \checkmark$, $T_1(P) = P \checkmark$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)' \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

Multiple steps of the quantum walk: $(\langle 0| \otimes I \rangle W^{k}(|0\rangle \otimes I) = T_{k}(P)$ $[T_{k}(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_{k}(x) - T_{k-1}(x)]$ Proof: Proceed by induction, observe $T_{0}(P) = I \checkmark$, $T_{1}(P) = P \checkmark$ $(\langle 0| \otimes I \rangle W^{k+1}(|0\rangle \otimes I) = (\langle 0| \otimes I \rangle W'((2|0\rangle\langle 0| \otimes I) - I) W^{k}(|0\rangle \otimes I) =$ $= \underbrace{(\langle 0| \otimes I \rangle W'(2|0\rangle}_{2P} \underbrace{\langle 0| \otimes I \rangle W^{k}(|0\rangle \otimes I)}_{T_{k}(P)} - \underbrace{(\langle 0| \otimes I \rangle W^{k-1}(|0\rangle \otimes I)}_{T_{k-1}(P)}$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constants.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)' \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

Multiple steps of the quantum walk: $(\langle 0| \otimes I \rangle W^{k}(|0\rangle \otimes I) = T_{k}(P)$ $[T_{k}(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_{k}(x) - T_{k-1}(x)]$ Proof: Proceed by induction, observe $T_{0}(P) = I \checkmark$, $T_{1}(P) = P \checkmark$ $(\langle 0| \otimes I \rangle W^{k+1}(|0\rangle \otimes I) = (\langle 0| \otimes I \rangle W'((2|0\rangle\langle 0| \otimes I) - I) W^{k}(|0\rangle \otimes I) =$ $= \underbrace{(\langle 0| \otimes I \rangle W'(2|0\rangle}_{2P} \underbrace{\langle 0| \otimes I \rangle W^{k}(|0\rangle \otimes I)}_{T_{k}(P)} - \underbrace{(\langle 0| \otimes I \rangle W^{k-1}(|0\rangle \otimes I)}_{T_{k-1}(P)}$

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15] Suppose that $U = \sum_{i} |i| \langle i| \otimes U_i$, and $Q : |0\rangle \mapsto \sum_{i} \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$.

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i\rangle\langle i| \otimes U_i$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$. Then the top-left corner $(\langle 0| \otimes I)(Q^{\dagger} \otimes I)U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_i q_i U_i$.

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i\rangle\langle i| \otimes U_i$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$. Then the top-left corner $(\langle 0| \otimes I)(Q^{\dagger} \otimes I)U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_i q_i U_i$. In particular if $(\langle 0| \otimes I)U_k(|0\rangle \otimes I) = T_k(P)$, then

 $(\langle 0|\langle 0|\otimes I)(Q^{\dagger}\otimes I)\overline{U(Q\otimes I)(|0\rangle|0\rangle\otimes I)}=\sum_{i}q_{k}T_{k}(P).$

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i \rangle \langle i| \otimes U_i$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$. Then the top-left corner $(\langle 0| \otimes I)(Q^{\dagger} \otimes I)U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_i q_i U_i$. In particular if $(\langle 0| \otimes I)U_k(|0\rangle \otimes I) = T_k(P)$, then

$$(\langle 0|\langle 0|\otimes I)(Q^{\dagger}\otimes I)U(Q\otimes I)(|0\rangle|0\rangle\otimes I)=\sum_{i}q_{k}T_{k}(P).$$

Used for Hamiltonian simulation, and much more!

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i\rangle\langle i| \otimes U_i$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$. Then the top-left corner $(\langle 0| \otimes I)(Q^{\dagger} \otimes I)U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_i q_i U_i$. In particular if $(\langle 0| \otimes I)U_k(|0\rangle \otimes I) = T_k(P)$, then

 $(\langle 0|\langle 0|\otimes I)(\overline{Q^{\dagger}\otimes I})\overline{U(Q\otimes I)(|0\rangle|0\rangle\otimes I)}=\sum_{i}q_{k}T_{k}(\overline{P}).$

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

 $(\langle 0|\otimes I)V(|0\rangle\otimes I)\stackrel{\varepsilon}{\approx}P^{t}$

with using only $O(\sqrt{t \log(1/\varepsilon)})$ quantum walk steps.

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i\rangle\langle i| \otimes U_i$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$. Then the top-left corner $(\langle 0| \otimes I)(Q^{\dagger} \otimes I)U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_i q_i U_i$. In particular if $(\langle 0| \otimes I)U_k(|0\rangle \otimes I) = T_k(P)$, then

 $(\langle 0|\langle 0|\otimes I)(Q^{\dagger} \otimes I)U(Q\otimes I)(|0\rangle|0) \otimes I) = \sum_{i} \overline{q_{k}T_{k}(P)}.$

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

 $(\langle 0|\otimes I)V(|0\rangle\otimes I)\stackrel{\varepsilon}{\approx}P^{t}$

with using only $O(\sqrt{t \log(1/\varepsilon)})$ quantum walk steps. (Proof: $x^t \approx \sum_{k=0}^{\infty} \overline{T}_k(x)$)

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{v \in V} \sqrt{\pi_v} |v\rangle$ we can

- detect the presence of marked vertices $(M \neq 0)$ in time $O(\sqrt{HT})$ (Szegedy 2004)
- ▶ find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta \varepsilon}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- Find a marked vertex in time $\widetilde{O}(\sqrt{HT})$ (Ambainis, G, Jeffery, Kokainis 2019)

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{v \in V} \sqrt{\pi_v} |v\rangle$ we can

- detect the presence of marked vertices $(M \neq 0)$ in time $O(\sqrt{HT})$ (Szegedy 2004)
- ▶ find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta c}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- Find a marked vertex in time $\widetilde{O}(\sqrt{HT})$ (Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can

- detect marked vertices in square-root commute time $O(\sqrt{C_{\sigma,M}})$ (Belovs 2013)
- Find a marked vertex in time $\widetilde{O}(\sqrt{C_{\sigma,M}})$ (Piddock; Apers, G, Jeffery 2019)

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Triangle Finding

[(2014) non-walk algorithm by Le Gall: $O(n^{5/4})$]

- Black box: For any pair $u, v \in V \times V$ tells whether there is an edge uv
- Question: Is there any triangle in G?
- Query complexity: O(n^{13/10}) (Magniez, Sántha, Szegedy 2003)

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Triangle Finding

[(2014) non-walk algorithm by Le Gall: $O(n^{5/4})$]

- Black box: For any pair $u, v \in V \times V$ tells whether there is an edge uv
- Question: Is there any triangle in G?
- Query complexity: O(n^{13/10}) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification

- Black box: Tells any entry of the $n \times n$ matrices A, B or C.
- Question: Does AB = C hold?
- Query complexity: $O(n^{5/3})$ (Buhrman, Špalek 2004)

Continuous-time quantum walks

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. The Laplacian is defined as

$$u \neq v$$
: $L_{uv} = w_{uv}$, and $L_{uu} = -\sum_{v} w_{uv}$.

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. The Laplacian is defined as

$$u \neq v$$
: $L_{uv} = w_{uv}$, and $L_{uu} = -\sum_{v} w_{uv}$.

Continuous-time walks

Evolution of the state:

$$\frac{d}{dt}\rho_u(t) = \sum_{v \in V} L_{uv} \rho_v(t) \qquad \Longrightarrow \qquad \qquad \rho(t) = e^{tL} \rho(0)$$

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. The Laplacian is defined as

$$u \neq v$$
: $L_{uv} = w_{uv}$, and $L_{uu} = -\sum_{v} w_{uv}$.

Continuous-time walks

Evolution of the state:

$$\frac{d}{dt}p_{u}(t) = \sum_{v \in V} L_{uv}p_{v}(t) \implies p(t) = e^{tL}p(0)$$

$$irac{d}{dt}\psi_u(t)=\sum_{v\in V}L_{uv}\psi_v(t) \implies \psi(t)=e^{-itL}\psi(0)$$

Exponential speedup by a quantum walk

Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman: quant-ph/0209131

Same speed-up by Szegedy walks?

Can be reduced to the line

$$A = \frac{1}{3} \begin{pmatrix} 1 & \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ \sqrt{2} & 0 & \sqrt{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & \sqrt{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \sqrt{2} & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & \sqrt{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \sqrt{2} & 0 & \sqrt{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{2} & 0 & \sqrt{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & \sqrt{2} & 1 \end{pmatrix}$$

Show that the bottom left corner of $T_m(A)$ is 1/poly(n) large for some m = poly(n).