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Outline

» Coined quantum walks
> Szegedy quantum walks

» Continuous-time quantum walks
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Coined quantum walks



(Classical) Random walk on the line

In each step we toss a coin:

> if heads we go one step left
> if tails we go one step right
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» if heads we go one step left
> if tails we go one step right
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> The probability of being further than ~ VT is small.

> Being at some specific point of the interval [- VT, VT] has chance ~ 1/ VT, i.e.,
the distribution is roughly uniform on this interval.
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» Quantum walk is deterministic and reversible!
> Only the measurement introduces probability.



Distribution after T steps — upon measurement
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The probability distribution of the quantum random
walk with Hadamard coin starting in |0, 0} after T" = 100 steps.
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The probability distribution of the quantum random
walk with Hadamard coin starting in |0, 0} after T" = 100 steps.

Main differences
> Peak around T/ V2 — ballistic spreading
» Between —T/2 and T/2 the distribution is ~ uniform — quadratically faster mixing
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Szegedy quantum walks



Discrete-time quantum / random walks
Discrete-time Markov-chain on a weighted graph
Transition probability in one step (stochastic matrix)

Wyy

P,, = Pr(step to v| being at u) = Z—W
vel YWWu
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Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

Wyy

P,, = Pr(step to v| being at u) = S won
viel YYv'u

A unitary implementing the update
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veV
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Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

WVU

P,, = Pr(step to v| being at u) = Z—W
velU YWv'u

A unitary implementing the update

U: 0)lu) = > VPuIvlu)

veV

Generic coin operator

S := SWAP
C = U((2l0x0|® I) — U



Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

WVU

P,, = Pr(step to v| being at u) =

A unitary implementing the update

U: 0)lu) = > VPuIvlu)

veV

How to erase history? The Szegedy quantum walk operator:

W .= U -SWAP- U
W = U"- SWAP - U((2/0X0|® ) - )

Zv’eU Wyry



Understanding Szegedy’s quantum walk operator

For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constants.
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Multiple steps of the quantum walk: (0| ® W*(|0) ® I) = Tx(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Ty 1(X) = 2xTk(x) — Tk-1(x)]
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Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. ’15]
Suppose that U = Y};]iXil® U;, and Q : [0) = >; +/qili) for g; € [0, 1].
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Used for Hamiltonian simulation, and much more!
Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)
We can implement a unitary V such that
((0l® NV(0y® I) = P!
with using only O( tlog(1/8)) quantum walk steps. (Proof: x! ~ Zz;{’) Tk(x))
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Szegedy quantum walk based search
Suppose we have some unknown marked vertices M c V.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state }’,.,, +/7,|v) we can

» detect the presence of marked vertices (M # 0) in time O( \/HT) (Szegedy 2004)
» find a marked vertex in time O(%) (Magniez, Nayak, Roland, Santha 2006)
» find a marked vertex in time 5( \/HT) (Ambainis, G, Jeffery, Kokainis 2019)

11/16



Szegedy quantum walk based search
Suppose we have some unknown marked vertices M c V.
Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state }’,.,, +/7,|v) we can

» detect the presence of marked vertices (M # 0) in time O( \/HT) (Szegedy 2004)
» find a marked vertex in time O(ﬁ) (Magniez, Nayak, Roland, Santha 2006)
» find a marked vertex in time 5( \/HT) (Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution o~ on some vertices we can
> detect marked vertices in square-root commute time O( CU,M) (Belovs 2013)

» find a marked vertex in time 5( \/C(,,M) (Piddock; Apers, G, Jeffery 2019)



Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
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Element Distinctness
» Black box: Computes f on inputs corresponding to elements of [n]

» Question: Are there any i # j € [n] x [n] such that (i) = f(j)?
> Query complexity: O(n?’®) (Ambainis 2003) Q(n*®) (Aaronson & Shi 2001)

12/16



Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
Element Distinctness

» Black box: Computes f on inputs corresponding to elements of [n]

» Question: Are there any i # j € [n] x [n] such that f(i) = f(j)?

> Query complexity: O(n?’®) (Ambainis 2003) Q(n*®) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: O(n**)]
» Black box: For any pair u, v € V x V tells whether there is an edge uv

» Question: Is there any triangle in G?
> Query complexity: O(n'®1%) (Magniez, Santha, Szegedy 2003)
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Triangle Finding [(2014) non-walk algorithm by Le Gall: O(n**)]
» Black box: For any pair u, v € V x V tells whether there is an edge uv

» Question: Is there any triangle in G?
> Query complexity: O(n'®/1%) (Magniez, Santha, Szegedy 2003)

Matrix Product Verification
» Black box: Tells any entry of the n x n matrices A, B or C.

» Question: Does AB = C hold?
> Query complexity: O(n®/®) (Buhrman, Spalek 2004)
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Continuous-time quantum walks



Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as

utv:L, —w,,andL, — —Z Wyy.
Vv
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Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as

utv:L, —w,,andL, — —Z Wyy.
Vv

Continuous-time walks
Evolution of the state:

So =D Lenl) = p(t) = e"p(0)

7%

i) = 3 Lalt) = u(t) = e4(0)

veV
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Exponential speedup by a quantum walk
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Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman: quant-ph/0209131



Same speed-up by Szegedy walks?

Can be reduced to the line

1 v2 0 0 0 0 0 O©
v2 0 v2 0 0 0 0 O
0 V2 0 v2 0 0 0 O

110 0 vV2 0o 2 0 0 O

A= —

30 0 0 2 0 V2 0 o
0 0 0 0 V2 0 2 o0
0 0 0 0 0 V2 0 V2
0O 0 0O 0 0 0 V2 1

Show that the bottom left corner of Tp,(A) is 1/poly(n) large for some m = poly(n).
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