Quantum Walks

András Gilyén

ELTE kvantum-infó szeminárium 2020 szeptember 24

Outline

- Coined quantum walks
- Szegedy quantum walks
- Continuous-time quantum walks

Coined quantum walks

(Classical) Random walk on the line

In each step we toss a coin:

- if heads we go one step left
- if tails we go one step right

(Classical) Random walk on the line

In each step we toss a coin:

- if heads we go one step left
- if tails we go one step right

The distribution after T steps is roughly $N(0, \sqrt{T})$

The distribution after T steps is roughly $N(0, \sqrt{T})$

- The probability of being further than $\sim \sqrt{T}$ is small.
$>$ Being at some specific point of the interval $[-\sqrt{T}, \sqrt{T}]$ has chance $\sim 1 / \sqrt{T}$, i.e., the distribution is roughly uniform on this interval.

Quantum walk on the line

Quantum walk on the line

One step of the walk: SC i.e., first apply C and then apply S

- Quantum walk is deterministic and reversible!
- Only the measurement introduces probability.

Distribution after T steps - upon measurement

The probability distribution of the quantum random walk with Hadamard coin starting in $|0,0\rangle$ after $T=100$ steps.

Distribution after T steps - upon measurement

The probability distribution of the quantum random walk with Hadamard coin starting in $|0,0\rangle$ after $T=100$ steps.

Main differences

- Peak around $T / \sqrt{2} \rightarrow$ ballistic spreading
- Between $-T / 2$ and $T / 2$ the distribution is \sim uniform \rightarrow quadratically faster mixing

Szegedy quantum walks

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$
P_{v u}=\operatorname{Pr}(\text { step to } v \mid \text { being at } u)=\frac{w_{v u}}{\sum_{v^{\prime} \in U} w_{v^{\prime} u}}
$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$
P_{v u}=\operatorname{Pr}(\text { step to } v \mid \text { being at } u)=\frac{w_{v u}}{\sum_{v^{\prime} \in U} w_{v^{\prime} u}}
$$

A unitary implementing the update

$$
U:|0\rangle|u\rangle \mapsto \sum_{v \in V} \sqrt{P_{v u}}|v\rangle|u\rangle
$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$
P_{v u}=\operatorname{Pr}(\text { step to } v \mid \text { being at } u)=\frac{w_{v u}}{\sum_{v^{\prime} \in U} w_{v^{\prime} u}}
$$

A unitary implementing the update

$$
U:|0\rangle|u\rangle \mapsto \sum_{v \in V} \sqrt{P_{v u}}|v\rangle|u\rangle
$$

Generic coin operator

$$
\begin{aligned}
& S:=\text { SWAP } \\
& C:=U((2|0 \times 0| \otimes I)-I) U^{\dagger}
\end{aligned}
$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$
P_{v u}=\operatorname{Pr}(\text { step to } v \mid \text { being at } u)=\frac{w_{v u}}{\sum_{v^{\prime} \in U} w_{v^{\prime} u}}
$$

A unitary implementing the update

$$
U:|0\rangle|u\rangle \mapsto \sum_{v \in V} \sqrt{P_{v u}}|v\rangle|u\rangle
$$

How to erase history? The Szegedy quantum walk operator:

$$
\begin{aligned}
W^{\prime} & : \\
W: & U^{\dagger} \cdot \operatorname{SWAP} \cdot U \\
W & U^{\dagger} \cdot \operatorname{SWAP} \cdot U((2|0 X 0| \otimes I)-I)
\end{aligned}
$$

Understanding Szegedy's quantum walk operator

For simplicity let us assume $P_{u v}=P_{v u}$, i.e., the total weight of vertices is constants.

Understanding Szegedy's quantum walk operator

For simplicity let us assume $P_{u v}=P_{v u}$, i.e., the total weight of vertices is constants.
A block-encoding of the Markov chain: $(\langle 0| \otimes \mid) W^{\prime}(|0\rangle \otimes \mid)=P$

Understanding Szegedy's quantum walk operator

For simplicity let us assume $P_{u v}=P_{v u}$, i.e., the total weight of vertices is constants.
A block-encoding of the Markov chain: $(\langle 0| \otimes \mid) W^{\prime}(|0\rangle \otimes \mid)=P$
Proof:
$\langle 0|\langle u| W^{\prime}|0\rangle|v\rangle=\langle 0|\langle u| U^{\dagger} \cdot$ SWAP $\cdot U|0\rangle|v\rangle=\left(\sum_{v^{\prime} \in V} \sqrt{P_{v^{\prime} u}\left|V^{\prime}\right\rangle|u\rangle}\right)^{\dagger} \operatorname{SWAP}\left(\sum_{u^{\prime} \in V} \sqrt{P_{u^{\prime} v}\left|u^{\prime}\right\rangle|v\rangle}\right)$

Understanding Szegedy's quantum walk operator

For simplicity let us assume $P_{u v}=P_{v u}$, i.e., the total weight of vertices is constants.
A block-encoding of the Markov chain: $(\langle 0| \otimes \mid) W^{\prime}(|0\rangle \otimes \mid)=P$
Proof:
$\langle 0|\langle u| W^{\prime}|0\rangle|v\rangle=\langle 0|\langle u| U^{\dagger} \cdot$ SWAP $\left.\cdot U|0\rangle|v\rangle=\left(\sum_{v^{\prime} \in V} \sqrt{P_{v^{\prime}}\left|v^{\prime}\right\rangle}\right\rangle|u\rangle\right)^{\dagger} \operatorname{SWAP}\left(\sum_{u^{\prime} \in V} \sqrt{P_{u^{\prime} v}\left|u^{\prime}\right\rangle|v\rangle}\right)$

Multiple steps of the quantum walk: $(\langle 0| \otimes \mid) W^{k}(|0\rangle \otimes \mid)=T_{k}(P)$
$\left[T_{k}(x)=\cos (k \arccos (x))\right.$ Chebyshev polynomials: $\left.T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)\right]$

Understanding Szegedy's quantum walk operator

For simplicity let us assume $P_{u v}=P_{v u}$, i.e., the total weight of vertices is constants.
A block-encoding of the Markov chain: $(\langle 0| \otimes \mid) W^{\prime}(|0\rangle \otimes \mid)=P$
Proof:
$\langle 0|\langle u| W^{\prime}|0\rangle|v\rangle=\langle 0|\langle u| U^{\dagger} \cdot$ SWAP. U|0 $\left.\rangle|v\rangle=\left(\sum_{v^{\prime} \in V} \sqrt{P_{v^{\prime} u}\left|v^{\prime}\right\rangle}\right\rangle|u\rangle\right)^{\dagger} \operatorname{SWAP}\left(\sum_{u^{\prime} \in V} \sqrt{P_{u^{\prime} v}\left|u^{\prime}\right\rangle|v\rangle}\right)$

Multiple steps of the quantum walk: $(\langle 0| \otimes \mid) W^{k}(|0\rangle \otimes \mid)=T_{k}(P)$
$\left[T_{k}(x)=\cos (k \arccos (x))\right.$ Chebyshev polynomials: $\left.T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)\right]$
Proof: Proceed by induction, observe $T_{0}(P)=I \checkmark, T_{1}(P)=P \checkmark$

Understanding Szegedy's quantum walk operator

For simplicity let us assume $P_{u v}=P_{v u}$, i.e., the total weight of vertices is constants.
A block-encoding of the Markov chain: $(\langle 0| \otimes \mid) W^{\prime}(|0\rangle \otimes \mid)=P$
Proof:
$\langle 0|\langle u| W^{\prime}|0\rangle|v\rangle=\langle 0|\langle u| U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle=\left(\sum_{v^{\prime} \in V} \sqrt{P_{v^{\prime}} \|}\left|v^{\prime}\right\rangle|u\rangle\right)^{\dagger} \operatorname{SWAP}\left(\sum_{u^{\prime} \in V} \sqrt{P_{u^{\prime} v}\left|u^{\prime}\right\rangle|v\rangle}\right)$

Multiple steps of the quantum walk: $(\langle 0| \otimes \mid) W^{k}(|0\rangle \otimes \mid)=T_{k}(P)$

$\left[T_{k}(x)=\cos (k \arccos (x))\right.$ Chebyshev polynomials: $\left.T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)\right]$
Proof: Proceed by induction, observe $T_{0}(P)=I \checkmark, T_{1}(P)=P \checkmark$

$$
\begin{aligned}
(\langle 0| \otimes I) W^{k+1}(|0\rangle \otimes I) & =(\langle 0| \otimes I) W^{\prime}((2|0 X 0| \otimes I)-I) W^{k}(|0\rangle \otimes I)= \\
& =\underbrace{(\langle 0| \otimes I) W^{\prime}(2|0\rangle}_{2 P} \underbrace{\langle 0| \otimes I) W^{k}(|0\rangle \otimes I)}_{T_{k}(P)}-\underbrace{(\langle 0| \otimes I) W^{k-1}(|0\rangle \otimes I)}_{T_{k-1}(P)}
\end{aligned}
$$

Understanding Szegedy's quantum walk operator

For simplicity let us assume $P_{u v}=P_{v u}$, i.e., the total weight of vertices is constants.
A block-encoding of the Markov chain: $(\langle 0| \otimes \mid) W^{\prime}(|0\rangle \otimes \mid)=P$
Proof:
$\left.\langle 0|\langle u| W^{\prime}|0\rangle|v\rangle=\langle 0|\langle u| U^{\dagger} \cdot \operatorname{SWAP} \cdot U|0\rangle|v\rangle=\left(\sum_{v^{\prime} \in V} \sqrt{P_{v^{\prime}}\left|v^{\prime}\right\rangle}\right\rangle|u\rangle\right)^{\dagger} \operatorname{SWAP}\left(\sum_{u^{\prime} \in V} \sqrt{P_{u^{\prime} v}\left|u^{\prime}\right\rangle|v\rangle}\right)$

Multiple steps of the quantum walk: $(\langle 0| \otimes \mid) W^{k}(|0\rangle \otimes \mid)=T_{k}(P)$

$\left[T_{k}(x)=\cos (k \arccos (x))\right.$ Chebyshev polynomials: $\left.T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)\right]$
Proof: Proceed by induction, observe $T_{0}(P)=I \checkmark, T_{1}(P)=P \checkmark$

$$
\begin{aligned}
(\langle 0| \otimes I) W^{k+1}(|0\rangle \otimes I) & =(\langle 0| \otimes I) W^{\prime}((2|0 X 0| \otimes I)-I) W^{k}(|0\rangle \otimes I)= \\
& =\underbrace{(\langle 0| \otimes I) W^{\prime}(2|0\rangle}_{2 P} \underbrace{\langle 0| \otimes I) W^{k}(|0\rangle \otimes I)}_{T_{k}(P)}-\underbrace{(\langle 0| \otimes I) W^{k-1}(|0\rangle \otimes I)}_{T_{k-1}(P)}
\end{aligned}
$$

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs \& Wiebe '12, Berry et al. '15]
Suppose that $U=\sum_{i}|i X i| \otimes U_{i}$, and $Q:|0\rangle \mapsto \sum_{i} \sqrt{q_{i}}| \rangle$ for $q_{i} \in[0,1]$.

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs \& Wiebe '12, Berry et al. '15]
Suppose that $U=\sum_{i}|i\rangle i \mid \otimes U_{i}$, and $Q:|0\rangle \mapsto \sum_{i} \sqrt{q_{i}}|i\rangle$ for $q_{i} \in[0,1]$. Then the top-left corner $(\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_{i} q_{i} U_{i}$.

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs \& Wiebe '12, Berry et al. '15]
Suppose that $U=\sum_{i}|i X i| \otimes U_{i}$, and $Q:|0\rangle \mapsto \sum_{i} \sqrt{q_{i}}|i\rangle$ for $q_{i} \in[0,1]$. Then the top-left corner $(\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_{i} q_{i} U_{i}$. In particular if $(\langle 0| \otimes I) U_{k}(|0\rangle \otimes I)=T_{k}(P)$, then

$$
(\langle 0|\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle|0\rangle \otimes I)=\sum_{i} q_{k} T_{k}(P) .
$$

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs \& Wiebe '12, Berry et al. '15]
Suppose that $U=\sum_{i}|i X i| \otimes U_{i}$, and $Q:|0\rangle \mapsto \sum_{i} \sqrt{q_{i}}|i\rangle$ for $q_{i} \in[0,1]$. Then the top-left corner $(\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_{i} q_{i} U_{i}$. In particular if $(\langle 0| \otimes I) U_{k}(|0\rangle \otimes I)=T_{k}(P)$, then

$$
(\langle 0|\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle|0\rangle \otimes I)=\sum_{i} q_{k} T_{k}(P) .
$$

Used for Hamiltonian simulation, and much more!

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs \& Wiebe '12, Berry et al. '15]
Suppose that $U=\sum_{i}|i X i| \otimes U_{i}$, and $Q:|0\rangle \mapsto \sum_{i} \sqrt{q_{i}}|i\rangle$ for $q_{i} \in[0,1]$. Then the top-left corner $(\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_{i} q_{i} U_{i}$. In particular if $(\langle 0| \otimes I) U_{k}(|0\rangle \otimes I)=T_{k}(P)$, then

$$
(\langle 0|\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle|0\rangle \otimes I)=\sum_{i} q_{k} T_{k}(P) .
$$

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers \& Sarlette 2018)

We can implement a unitary V such that

$$
(\langle 0| \otimes I) \vee(|0\rangle \otimes I) \stackrel{\varepsilon}{\approx} P^{t}
$$

with using only $O(\sqrt{t \log (1 / \varepsilon)})$ quantum walk steps.

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs \& Wiebe '12, Berry et al. '15]
Suppose that $U=\sum_{i}|i X i| \otimes U_{i}$, and $Q:|0\rangle \mapsto \sum_{i} \sqrt{q_{i}}|i\rangle$ for $q_{i} \in[0,1]$. Then the top-left corner $(\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle \otimes I)$ is $\sum_{i} q_{i} U_{i}$. In particular if $(\langle 0| \otimes I) U_{k}(|0\rangle \otimes I)=T_{k}(P)$, then

$$
(\langle 0|\langle 0| \otimes I)\left(Q^{\dagger} \otimes I\right) U(Q \otimes I)(|0\rangle|0\rangle \otimes I)=\sum_{i} q_{k} T_{k}(P) .
$$

Used for Hamiltonian simulation, and much more!

Corollary: Quantum fast-forwarding (Apers \& Sarlette 2018)

We can implement a unitary V such that

$$
(\langle 0| \otimes I) \vee(|0\rangle \otimes I) \stackrel{\varepsilon}{\approx} P^{t}
$$

with using only $O(\sqrt{t \log (1 / \varepsilon)})$ quantum walk steps. (Proof: $x^{t} \approx \sum_{k=0}^{\approx \sqrt{t}} T_{k}(x)$)

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{v \in V} \sqrt{\pi_{v}}|v\rangle$ we can

- detect the presence of marked vertices $(M \neq 0)$ in time $O(\sqrt{H T})$ (Szegedy 2004)
- find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta \varepsilon}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- find a marked vertex in time $\widetilde{O}(\sqrt{H T})$ (Ambainis, G, Jeffery, Kokainis 2019)

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state $\sum_{v \in V} \sqrt{\pi_{v}}|v\rangle$ we can

- detect the presence of marked vertices $(M \neq 0)$ in time $O(\sqrt{H T})$ (Szegedy 2004)
- find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta \varepsilon}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- find a marked vertex in time $\widetilde{O}(\sqrt{H T})$ (Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can

- detect marked vertices in square-root commute time $O\left(\sqrt{C_{\sigma, M}}\right)$ (Belovs 2013)
- find a marked vertex in time $\widetilde{O}\left(\sqrt{C_{\sigma, M}}\right)$ (Piddock; Apers, G, Jeffery 2019)

Walks on the Johnson graph (Sántha arXiv:0808.0059)

 Vertices: $\{S \subset N:|S|=K\}$; Edges: $\left\{\left(S, S^{\prime}\right):\left|S \Delta S^{\prime}\right|=2\right\}$
Walks on the Johnson graph (Sántha arXiv:0808.0059)

Vertices: $\{S \subset N:|S|=K\}$; Edges: $\left\{\left(S, S^{\prime}\right):\left|S \Delta S^{\prime}\right|=2\right\}$

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of $[n]$
- Question: Are there any $i \neq j \in[n] \times[n]$ such that $f(i)=f(j)$?
- Query complexity: $O\left(n^{2 / 3}\right)$ (Ambainis 2003) $\Omega\left(n^{2 / 3}\right)$ (Aaronson \& Shi 2001)

Walks on the Johnson graph (Sántha arXiv:0808 .0059)

Vertices: $\{S \subset N:|S|=K\}$; Edges: $\left\{\left(S, S^{\prime}\right):\left|S \Delta S^{\prime}\right|=2\right\}$

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in[n] \times[n]$ such that $f(i)=f(j)$?
- Query complexity: $O\left(n^{2 / 3}\right)$ (Ambainis 2003) $\Omega\left(n^{2 / 3}\right)$ (Aaronson \& Shi 2001)

Triangle Finding

[(2014) non-walk algorithm by Le Gall: $\left.\widetilde{O}\left(n^{5 / 4}\right)\right]$

- Black box: For any pair $u, v \in V \times V$ tells whether there is an edge $u v$
- Question: Is there any triangle in G ?
- Query complexity: $O\left(n^{13 / 10}\right)$ (Magniez, Sántha, Szegedy 2003)

Walks on the Johnson graph (Sántha arXiv:0808.0059)

 Vertices: $\{S \subset N:|S|=K\}$; Edges: $\left\{\left(S, S^{\prime}\right):\left|S \Delta S^{\prime}\right|=2\right\}$
Element Distinctness

- Black box: Computes f on inputs corresponding to elements of $[n]$
- Question: Are there any $i \neq j \in[n] \times[n]$ such that $f(i)=f(j)$?
- Query complexity: $O\left(n^{2 / 3}\right)$ (Ambainis 2003) $\Omega\left(n^{2 / 3}\right)$ (Aaronson \& Shi 2001)

Triangle Finding

[(2014) non-walk algorithm by Le Gall: $\left.\widetilde{O}\left(n^{5 / 4}\right)\right]$

- Black box: For any pair $u, v \in V \times V$ tells whether there is an edge $u v$
- Question: Is there any triangle in G ?
- Query complexity: $O\left(n^{13 / 10}\right)$ (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification

- Black box: Tells any entry of the $n \times n$ matrices A, B or C.
- Question: Does $A B=C$ hold?
- Query complexity: $O\left(n^{5 / 3}\right)$ (Buhrman, Špalek 2004)

Continuous-time quantum walks

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G=(V, E)$ be a finite simple graph, with non-negative edge-weights $w: E \rightarrow \mathbb{R}_{+}$. The Laplacian is defined as

$$
u \neq v: L_{u v}=w_{u v} \text {, and } L_{u u}=-\sum_{v} w_{u v} .
$$

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G=(V, E)$ be a finite simple graph, with non-negative edge-weights $w: E \rightarrow \mathbb{R}_{+}$. The Laplacian is defined as

$$
u \neq v: L_{u v}=w_{u v} \text {, and } L_{u u}=-\sum_{v} w_{u v} .
$$

Continuous-time walks

Evolution of the state:

$$
\frac{d}{d t} p_{u}(t)=\sum_{v \in V} L_{u v} p_{v}(t) \quad \Longrightarrow \quad p(t)=e^{t L} p(0)
$$

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G=(V, E)$ be a finite simple graph, with non-negative edge-weights $w: E \rightarrow \mathbb{R}_{+}$. The Laplacian is defined as

$$
u \neq v: L_{u v}=w_{u v}, \text { and } L_{u u}=-\sum_{v} w_{u v} .
$$

Continuous-time walks

Evolution of the state:

$$
\begin{array}{rlr}
\frac{d}{d t} p_{u}(t)=\sum_{v \in V} L_{u v} p_{v}(t) & \Longrightarrow & p(t)=e^{t L} p(0) \\
i \frac{d}{d t} \psi_{u}(t)=\sum_{v \in V} L_{u v} \psi_{v}(t) & \Longrightarrow & \psi(t)=e^{-i t L} \psi(0)
\end{array}
$$

Exponential speedup by a quantum walk

Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman: quant-ph/0209131

Same speed-up by Szegedy walks?

Can be reduced to the line

$$
A=\frac{1}{3}\left(\begin{array}{cccccccc}
1 & \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} & 0 & \sqrt{2} & 0 & 0 & 0 & 0 & 0 \\
0 & \sqrt{2} & 0 & \sqrt{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & \sqrt{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{2} & 0 & \sqrt{2} & 0 \\
0 & 0 & 0 & 0 & 0 & \sqrt{2} & 0 & \sqrt{2} \\
0 & 0 & 0 & 0 & 0 & 0 & \sqrt{2} & 1
\end{array}\right)
$$

Show that the bottom left corner of $T_{m}(A)$ is $1 / \operatorname{poly}(n)$ large for some $m=\operatorname{poly}(n)$.

