Quantum singular value
transformation

Andréas Gilyén

ELTE kvantum-infé6 szeminarium 2020 oktdber 1

Quantum algorithm design

Many quantum algorithms have a common structure!

1/21

Szegedy quantum walk

Discrete-time Markov-chain on a weighted graph
Transition probability in one step (stochastic matrix)
P, = Pr(step to v| being at u) =

Wy

2velU Wvu

/21

Szegedy quantum walk

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)
Wyy

P, = Pr(step to v| being at u) = S
vielU YW'u

Szegedy walk operator W .— y'.SWAP. U
W := U™ - SWAP - U((2/0X0|® I) - I)

A block-encoding of the (symmetric) Markov chain: ((0|® W’(|0)® I) = P

/21

Szegedy quantum walk

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)
Wyy

P, = Pr(step to v| being at u) = S
vielU YW'u

Szegedy walk operator W .— y'.SWAP. U
W := U"- SWAP - U((2/0X0|® I) — I
A block-encoding of the (symmetric) Markov chain: ((0|® W’(|0)® I) = P

Multiple steps of the quantum walk: ((0|®)WX(|0) ® I) = Tx(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Tjiy1(x) = 2xTk(x) — Tk—1(x)]

/21

Szegedy quantum walk

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)
Wyy

P, = Pr(step to v| being at u) = S
vielU YW'u

Szegedy walk operator W .— y'.SWAP. U
W := U™ - SWAP - U((2/0X0|® I) - I)

A block-encoding of the (symmetric) Markov chain: ((0|® W’(|0)® I) = P

Multiple steps of the quantum walk: ((0] ®)WX(|0)® I) = T«(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Tjiy1(x) = 2xTk(x) — Tk—1(x)]
Proof: Proceed by induction, observe To(P) = I/, T{(P) = PV

/21

Szegedy quantum walk

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)
Wyy

o = IFEER D v g i) = o
veU Wv'u

Szegedy walk operator W .— y'.SWAP. U
W := U™ - SWAP - U((2/0X0|® I) - I)

A block-encoding of the (symmetric) Markov chain: ((0|® W’(|0)® I) = P

Multiple steps of the quantum walk: ((0] ®)WX(|0)® I) = T«(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Tjiy1(x) = 2xTk(x) — Tk—1(x)]
Proof: Proceed by induction, observe To(P) = IV, T1(P) = PV
(0l ® NWKHT(10y ® 1) = (O] ®)W’ ((2/0X0| ® I) — NWX(j0) ® I) =
= (0] ® NW’(2]0) (0| ® NWX(j0)® I) - (O] @ WK (j0) ® 1)

ep Tk(P) Tk-1(P)

Szegedy quantum walk

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)
Wyy

o = IFEER D v g i) = o
veU Wv'u

Szegedy walk operator W .— y'.SWAP. U
W := U™ - SWAP - U((2/0X0|® I) - I)

A block-encoding of the (symmetric) Markov chain: ((0|® W’(|0)® I) = P

Multiple steps of the quantum walk: ((0] ®)WX(|0)® I) = T«(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Tjiy1(x) = 2xTk(x) — Tk—1(x)]
Proof: Proceed by induction, observe To(P) = IV, T1(P) = PV
(0l ® NWKHT(10y ® 1) = (O] ®)W’ ((2/0X0| ® I) — NWX(j0) ® I) =
= (0] ® NW’(2]0) (0| ® NWX(j0)® I) - (O] @ WK (j0) ® 1)

ep Tk(P) Tk-1(P)

Grover search and amplitude amplification

Amplitude amplification problem
Given U such that

U|0) = VPI0)|wgooa) + V1 = pI)Ibaa),

3/21

Grover search and amplitude amplification

Amplitude amplification problem

Given U such that
U[0) = VBIO)|¥good) + VT = PITIbac).
prepare [/good) (With high probability).

Algorithm and its success probability

U---[2]0X0| —] UT [(Jox0] — [1X1]) ® [] U[210X0| — 1] UT [(|0X0] — [1X1))® [U

Grover search and amplitude amplification

Amplitude amplification problem

Given U such that
U[0) = VBIO)|¥good) + VT = PITIbac).
prepare [/good) (With high probability).

Algorithm and its success probability

U---[200X0] -] U [(I0X0] - [1X1]) ® /] U[2[0X0| - 1] U [(I0X0| - [1X1]) ®] U

amplitude of |1//good> after k iterations:

+sin((2k + 1)a), where @ = arcsin(/p)

Grover search and amplitude amplification

Amplitude amplification problem

Given U such that
U[0) = VBIO)|¥good) + VT = PITIbac).
prepare [/good) (With high probability).

Algorithm and its success probability
U---[2[0X0l - /] UT [(Iox0l - I1X1]) ® /] U[2[0X0| - /] U [(lox0l - 11X1]) ®] U
amplitude of |1//good> after k iterations:

+sin((2k + 1)a), where @ = arcsin(/p)

which is
+ cos((2k + 1) arccos(Vp)) = £ Tok+1(VP).

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map.

4/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

M

4/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Us :[i Plsi)lwiXvil

4/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Us :[i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Uy = [i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

Alternating phase modulation sequence Uy :=

/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT

Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Uy = [i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

Alternating phase modulation sequence Uy :=

Simmilar result holds for even polynomials.

Quantum algorithm design

Outline

Motivating example - the HHL algorithm

We want to solve large systems of linear equations
Ax = b.

A quantum computer can nicely work with exponential sized matrices!
Given |b), we can prepare a solution «« A~"|b).

21

Outline
Motivating example - the HHL algorithm

We want to solve large systems of linear equations

Ax = b.
A quantum computer can nicely work with exponential sized matrices!
Given |b), we can prepare a solution «« A~"|b).

Matrix arithmetic on a quantum computer using block-encoding

Target: A; Implementation: U:[S]; Algorithm: U’ :[f(A) .]

In HHL f(x) = 1. Use Singular Value Transformation to implement it!

/21

Outline

Motivating example - the HHL algorithm
We want to solve large systems of linear equations
Ax = b.

A quantum computer can nicely work with exponential sized matrices!
Given |b), we can prepare a solution «« A~"|b).

Matrix arithmetic on a quantum computer using block-encoding
Target: A; Implementation: U —[aaK]; Algorithm: U’ _[f(A) .]

In HHL f(x) = 1. Use Singular Value Transformation to implement it!

Applications
> Optimal Hamiltonian simulation [Low et al.], Quantum walks [Szegedy]

> Fixed point [Yoder et al.] and Oblivious ampl. ampl. [Berry et al.]

» HHL, Regression [Chakraborty et al.], ML [Kerendis & Prakash], Property testing, . ..

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U—[/‘\ :] = A=(0FanU(0)’sl).

/21

Block-encoding

A way to represent large matrices on a quantum computer efficiently
A
U= [

One can efficiently construct block-encodings of

= A=(0FanU(0)’sl).

/21

Block-encoding

A way to represent large matrices on a quantum computer efficiently
A
U= [

One can efficiently construct block-encodings of

= A=(0FanU(0)’sl).

» an efficiently implementable unitary U,

/21

Block-encoding

A way to represent large matrices on a quantum computer efficiently
A
U= [

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,

= A=(0FanU(0)’sl).

/21

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U—[/‘\ :] = A=(0FanU(0)’sl).

One can efficiently construct block-encodings of
> an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,

21

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U—[/‘\ :] = A=(0FanU(0)’sl).

One can efficiently construct block-encodings of
» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,
> a density operator p given a unitary preparing its purification.

21

Block-encoding

A way to represent large matrices on a quantum computer efficiently
U—[G } = A=(0FanU(0)’sl).

One can efficiently construct block-encodings of
» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,
> a density operator p given a unitary preparing its purification.
» a POVM operator M given we can sample from the rand.var.: Tr(pM),

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices.

8/21

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows"

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)* . .
R: |0)[0)]iy — 10) Z %ll)llﬂ + [1)|i)|garbage),
K

/21

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z ull)llﬂ + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

/21

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z uIl)lk) + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:

(0KOKIRTClO)I0)Ij)

21

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z uIl)lk) + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — |0>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:

(OKOKIIRTCIOO)) = (RIO)Ii))" - (CI0YI0)1j))

21

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

R:10)10)li) — I0>Z (\/_ liblk) + [1)li)lgarbage),

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:

3

;
Ai)* . A
(OKOIIIRT Cl0Y/0)lj) = (RI0NO0YIN)' - (CIOYOYI))) = [Z (|'>|k>) [Z J |f>|!>]
K 7

S

B

21

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices. Given "sparse-access “ we can
efficiently implement unitaries preparing "rows*

VAK)" . .
R:10)|0)iy — 10) Z ull)lk) + [1)|i)|garbage),
— s

and "columns*

A .
C: |0)[0)l)) — IO>Z %I@Iﬁ + [2)lj)lgarbage),
&

They form a block-encoding of A/s:

5
5

{j

Vs

&

;

k).) Ajj

(OKOIIIRT Cl0Y/0)lj) = (RI0NO0YIN)' - (CIOYOYI))) = [Z () |'>|k>) [Z |5>|!>] = ?]
K 7

21

Efficient matrix arithmetics

9/21

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.

9/21

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Linear combination of (non-)unitary matrices [Childs and Wiebe ’12, Berry et al. ’15]
Suppose that U = Y;1iXil® U;, and P : |0) — >.; +/pili) for p; € [0, 1].

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Linear combination of (non-)unitary matrices [Childs and Wiebe ’12, Berry et al. ’15]

Suppose that U = Y;1iXil® U;, and P : |0) — >.; +/pili) for p; € [0, 1].
Then (PT ® I)U(P ® I) is a block-encoding of 3; p;Ui.

Efficient matrix arithmetics

Implementing arithmetic operations on block-encoded matrices

> Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

Linear combination of (non-)unitary matrices [Childs and Wiebe ’12, Berry et al. ’15]

Suppose that U = Y;1iXil® U;, and P : |0) — >.; +/pili) for p; € [0, 1].
Then (PT ® I)U(P ® I) is a block-encoding of 3; p;Ui.
In particular if (0] ® I)U;(|0) ® I) = Aj, then it is a block-encoding of

Z PiA;.
i

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map.

10/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

M

10/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Us :[i Plsi)lwiXvil

10/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Us :[i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

10/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Uy = [i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

Alternating phase modulation sequence Uy :=

10/21

Quantum Singular Value Transformation (QSVT)

Our main theorem about QSVT

Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U:[A .]:[2isilwiXvil .] s Uy = [i Plsi)lwiXvil

where ©(P) € RY is efficiently computable and U is the following circuit:

Alternating phase modulation sequence Uy :=

Simmilar result holds for even polynomials.

10/21

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators.

11/21

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: W’ :[G]; Walk: W" :[To(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)

11/21

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: W’ :[G]; Walk: W" :[To(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

11/21

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: W’ :[G]; Walk: W" :[To(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

11/21

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: W’ :[G]; Walk: W" :[To(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using o« Vt quantum operations.

11/21

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: W’ :[G]; Walk: W" :[To(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using o« Vt quantum operations. |.e., implement

="

11/21

Quantum walks and Hermitian matrices

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two
reflection operators. We can understand his algorithm as

Markov chain: M; Updates: W’ :[G]; Walk: W" :[To(M) .]

(Ty4 is the d-th Chebyshev polynomial of the first kind.)
If we choose ¢; = 5 forall j € {1,...,d}, we get P — +T,in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using o« Vt quantum operations. |.e., implement

v=|"

Proof: x! can be s-apx. on [-1, 1] with a degree-+/21 In(2/=) polynomial.

11/21

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.

12/21

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.
If H is Hermitian, then P(H) coincides with the singular value transform.

12/21

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]
Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.

If H is Hermitian, then P(H) coincides with the singular value transform.
Removing parity constraint for Hermitian matrices

Let P: [-1,1] — [—%, %] be a degree-d polynomial map. Suppose that U is an a-qubit
block-encoding of a Hermitian matrix H.

12/21

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]
Let P: [-1,1] — [-1,1] be a degree-d even/odd polynomial map.

If H is Hermitian, then P(H) coincides with the singular value transform.
Removing parity constraint for Hermitian matrices

Let P: [-1,1] — [—%, %] be a degree-d polynomial map. Suppose that U is an a-qubit
block-encoding of a Hermitian matrix H. We can implement

oo| "

using d times U and U", 1 controlled U, and O (ad) extra two-qubit gates.

12/21

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?

13/21

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?
X V1 -x2

R(x) := T i

e %7z R(x)e"7z - ... - R(x)e'7z = (x)?

13/21

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?
R(x) = X V1 - x2
Tl V=X —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all & € Rt! we have

() = [Pc(x) iQc(x) V1 - x2
L iQi(x) V1 - x2 P%(x) '

where P¢, Qc € C[x] are such that

;€72 R(x)e7z R(x)e47z =

(%)?

13/21

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?
R(x) = X V1 - x2
Tl V=X —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all & € Rt! we have

() = [Pc(x) iQc(x) V1 - x2
L iQi(x) V1 - x2 P%(x) '

where P¢, Qc € C[x] are such that
(i) deg(Pc) < danddeg(Qc) <d-1,and

;€72 R(x)e7z R(x)e47z =

(%)?

13/21

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?
R(x) = X V1 - x2
Tl V=X —X

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]
Let d € N; for all ¥ € R4t we have
() = [Pc(x) iQe(x) V1 - x2
iQA(X) V1 — x2 P%(x) '
where P¢, Qc € C[x] are such that

(i) deg(Pc) < danddeg(Qc) <d-1,and
(ii) Pc has parity-(d mod 2) and Q¢ has parity-(d — 1 mod 2), and

;€72 R(x)e7z R(x)e47z =

(%)?

13/21

Quantum signal processing & proof sketch of QSVT

Single qubit quantum control using o, phases?
R(x) = X V1 - x2
Tl Y1=-x2 —x

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let d € N; for all ® € R+ we have

() = [Pc(x) iQe(x) V1 - x2
iQ(x) V1 = x2 Px(x) ’
where P¢, Qc € C[x] are such that
(i) deg(Pc) < danddeg(Qc) <d-1,and
(i) Pc has parity-(d mod 2) and Q¢ has parity-(d =1 mod 2), and
(i) Vx € [-1,1]: [Pc(X)IZ + (1 = x®)|Qc(x)? = 1.

;€72 R(x)e7z R(x)e47z =

(%)?

13/21

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]
Let d € N, and P € R[x] be of degree d. There exists ® € R? such that

ﬁ R(x)e:) =[PCFX) :]

j=1

where R[Pc] = P if and only if

14/21

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]
Let d € N, and P € R[x] be of degree d. There exists ® € R? such that

ﬁ R(x)e:) =[PC'(X) :]

j=1
where R[Pc] = P if and only if
(i) P has parity-(d mod 2), and

14/21

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]
Let d € N, and P € R[x] be of degree d. There exists ® € R? such that

ﬁ R(X)e"”/‘fz =[Pc.(x)]

j=1
where R[Pc] = P if and only if

(i) P has parity-(d mod 2), and
(i) forall x € [-1,1]: |[P(x)| < 1.

14/21

Implementing the real part of a polynomial map

Direct implementation

—| ei¢d0'z l—

R(x)

—| gitd-10z l— Bp—

R(x

~—

—|ei¢oaz|_:[PCFX)]

15/21

Implementing the real part of a polynomial map

Direct implementation

— ei%e7: |1 R(x)

—| eitd-10z l— pp—

Indirect implementation

R(x

~—

—|ei¢oaz|_:[PCFX)]

ei¢d0'z D
EL R(x)

P gitoo PC(X) .
—---— R(x) I I N Pé'(x):

15/21

Implementing the real part of a polynomial map

Direct implementation

—| ei¢d0'z l— R(X

~—

Indirect implementation

ei¢d0'z D

—| eitd-10z l— cee

— R(x

~—

Real implementation

[P

N

D ei¢00'z

V)

gltor |—€

—|ei¢oaz|_:[PCFX)]

P(c(X) 2

Pi(x).

15/21

Generalisation to higher dimensions
1 x 1 case

ip
Input:[X] Modulation:[€ ot] Output:[P(.X)]

16/21

Generalisation to higher dimensions
1 x 1 case
it
Input:[X] Modulation:[© o-it] OUtput:[P(x) .]

2 x 2 case (higher-dimensional case is similar)
Input unitary Modulation Output circuit

< e P(x)

- S P(Y)

16/21

Generalisation to higher dimensions

1 X 1 case

ip
Input:[X] Modulation:[€ ot] Output:[P(.X)]

2 x 2 case (higher-dimensional case is similar)
Input unitary Modulation

Output circuit

X

o®

[P(¥)

16/21

Generalisation to higher dimensions

1 X 1 case

ip
Input:[X] Modulation:[© it] Output:[P(.X)]

2 x 2 case (higher-dimensional case is similar)

Input unitary Modulation

Output circuit

X

o®

[P(x)
P(y)
P(x)
P(y)
P(A)

16/21

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VXt WT,

17/21

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

17/21

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

¥

_ —05 05 1

17/21

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

¥

_ —05 05 1

17/21

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

¥

17/21

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and [|A*]| < «.

17/21

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT
Suppose that U is an a-qubit block-encoding of A, and [|A*]| < «.
By QSVT we can implement an e-approximate block-encoding of

1AJr

2k

using O(K log (%)) queries to U.

17/21

Direct implementation of HHL / the pseudoinverse
Singular value decomposition and pseudoinverse

Suppose A = WX V' is a singular value decomposition.
Then the pseudoinverse of A is AT = VW7, (note AT = VEWY)
where ¥t contains the inverses of the non-zero elements of ¥.

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and [|A*]| < «.
By QSVT we can implement an e-approximate block-encoding of

1
—A+,
2K

using O(Klog(%)) queries to U. For the corresponding approximating polynomial, see, e.g.,
the work of Childs, Kothari and Somma (2015).

17/21

Singular vector transformation and projection

New result: Singular vector transformation

Given a unitary U, and projectors M, 1, such that
k
A =TUn =" silgxvil
i=1

is a singular value decomposition.

18/21

Singular vector transformation and projection

New result: Singular vector transformation

Given a unitary U, and projectors M, 1, such that
K
A=TUM =" giloiXyil
i=1
is a singular value decomposition. Transform one copy of a quantum state

k k
W)= > ailw) 1o Ig)=) ailg).

18/21

Singular vector transformation and projection

New result: Singular vector transformation

Given a unitary U, and projectors M, 1, such that
k
A=TUN=) cilgiXui
is a singular value decomposition. Transform ontla:c1:opy of a quantum state
k k
W)= > ailw) 1o Ig)=) ailg).
i=i i=i

If ¢; > ¢ for all 0 # aj, we can e-apx. using QSVT with compl. 0(13 log (%))

18/21

Singular vector transformation and projection

New result: Singular vector transformation

Given a unitary U, and projectors M, 1, such that
K

A=TUN=) cilgiXui
is a singular value decomposition. Transform ontla:c1:opy of a quantum state

k k

W)= > ailw) 1o Ig)=) ailg).

i=i i=i

If ¢; > ¢ for all 0 # aj, we can e-apx. using QSVT with compl. 0(13 log (%))

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

Uiiny = VBIO)|¥gooa) + V1 = PIDIWbag), prepare |¥gooa)-

18/21

Singular vector transformation and projection

New result: Singular vector transformation

Given a unitary U, and projectors M, 1, such that
K

A=TUN=) cilgiXui
is a singular value decomposition. Transform ontla:c1:opy of a quantum state

k k

W)= > ailw) 1o Ig)=) ailg).

i=i i=i

If ¢; > ¢ for all 0 # aj, we can e-apx. using QSVT with compl. 0(13 Iog(%)).

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

Uiiny = VBIO)|¥gooa) + V1 = PIDIWbag), prepare |¥gooa)-

Note that (|0X0l ®)U(I¢inXtinl) = VPIO, ¥good X¥inl; we can apply QSVT.

18/21

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

19/21

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t,e > 0, implement a unitary U’, which is € close to e'™ . Can be achieved with query
complexity

O (t+ log(1/¢€)).

Gate complexity is O (a) times the above.

19/21

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t,& > 0, implement a unitary U’, which is & close to . Can be achieved with query
complexity

O (t+ log(1/¢€)).
Gate complexity is O (a) times the above.

Proof sketch

Approximate to e-precision sin(tx) and cos(tx) with polynomials of degree as above. Then use
QSVT and combine even/odd parts.

Optimal complexity

log(1/¢)
@(t iog(e + log(ws)/t))

19/21

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t,e > 0, implement a unitary U’, which is ¢ close to e™. Can be achieved with query
complexity

O (t+ log(1/¢€)).
Gate complexity is O (a) times the above.

Proof sketch

Approximate to e-precision sin(tx) and cos(tx) with polynomials of degree as above. Then use
QSVT and combine even/odd parts.

Optimal complexity

log(1/¢)
© (t log(e + log(1/2)/1)

) cf. density matrix exp. ©(t?/<) Lloyd et al., Kimmel et al.]

19/21

Distributional property testing [Bravy et al. ’09] [G. and Li ’19]
Suppose we can implement "quantum sampling®: U, : 10) = 3; v/piléili)

20/21

Distributional property testing [Bravy et al. ’09] [G. and Li ’19]
Suppose we can implement "quantum sampling®: U, : 10) = 3; v/piléili)

How can we efficiently compute, e.g., the entropy of (p;)?

Apply a block-encoding of a map |iy — +/log(p;)li} to the state, then estimate the amplitude.

20/21

Distributional property testing [Bravy et al. ’09] [G. and Li *19]
Suppose we can implement "quantum sampling®: U, : 10) = 3; v/piléili)

How can we efficiently compute, e.g., the entropy of (p;)?

Apply a block-encoding of a map |iy — +/log(p;)li} to the state, then estimate the amplitude.

We need a block-encoding of }}; /piliXil, and then transform singular values?

20/21

Distributional property testing [Bravy et al. ’09] [G. and Li ’19]
Suppose we can implement "quantum sampling®: U, : 10) = 3; v/piléili)

How can we efficiently compute, e.g., the entropy of (p;)?

Apply a block-encoding of a map |iy — +/log(p;)li} to the state, then estimate the amplitude.

We need a block-encoding of }}; /piliXil, and then transform singular values?
Observation: a block encoding of 3; /pjl¢;iXil suffices.

20/21

Distributional property testing [Bravy et al. ’09] [G. and Li ’19]
Suppose we can implement "quantum sampling®: U, : 10) = 3; v/piléili)

How can we efficiently compute, e.g., the entropy of (p;)?

Apply a block-encoding of a map |iy — +/log(p;)li} to the state, then estimate the amplitude.

We need a block-encoding of }}; /piliXil, and then transform singular values?
Observation: a block encoding of 3; /pjl¢;iXil suffices.

The same technique works for density operators!

20/21

Distributional property testing [Bravy et al. ’09] [G. and Li ’19]
Suppose we can implement "quantum sampling®: U, : 10) = 3; v/piléili)

How can we efficiently compute, e.g., the entropy of (p;)?

Apply a block-encoding of a map |iy — +/log(p;)li} to the state, then estimate the amplitude.

We need a block-encoding of }}; /piliXil, and then transform singular values?
Observation: a block encoding of 3; /pjl¢;iXil suffices.

The same technique works for density operators!
Purified access U, : [0) — X; Vpilgilvi), where p = 3; pilsiXipil

20/21

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let
f: [-1,1] - C, then implementing a block-encoding of f(H) requires at least || &||, uses of U, if
I € [-3. 3] is an interval of potential eigenvalues of H.

20/21

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let

f: [-1,1] - C, then implementing a block-encoding of f(H) requires at least || &||, uses of U, if

I € [-3. 3] is an interval of potential eigenvalues of H.

Proof sketch
The proof is based on an elementary argument about distinguishability of unitary operators.

20/21

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let

f: [-1,1] - C, then implementing a block-encoding of f(H) requires at least || &||, uses of U, if

I € [-3. 3] is an interval of potential eigenvalues of H.

Proof sketch
The proof is based on an elementary argument about distinguishability of unitary operators.

Optimality of pseudoinverse implementation

11 1
Let | := [;, 5} and let f(x) := e then o , = —k.

Thus our implementation is optimal up to the log(1/¢) factor.

20/21

Summarizing the various speed-ups

Speed-up Source of speed-up Examples of algorithms
) Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm
Singular value = square root of probability Grover search
Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible

Quantum walks

21/21

Summarizing the various speed-ups

Speed-up Source of speed-up Examples of algorithms
) Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm

Singular value = square root of probability Grover search

Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks
Some more applications

» Quantum walks, fast QMA amplification, fast quantum OR lemma
» Quantum Machine learning: PCA, principal component regression
> “Non-commutative measurements” (for ground state preparation)

> Fractional queries

>

