Quantum singular value transformation

András Gilyén

ELTE kvantum-infó szeminárium 2020 október 1

Quantum algorithm design

Many quantum algorithms have a common structure!

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \text{Pr}(\text{step to } v \mid \text{being at } u) = \frac{w_{vu}}{\sum_{v' \in U} w_{v'u}}$$

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \Pr(\text{step to } v \mid \text{being at } u) = \frac{w_{vu}}{\sum_{v' \in U} w_{v'u}}$$

Szegedy walk operator

$$W' := U^{\dagger} \cdot \text{SWAP} \cdot U$$

$$W := U^{\dagger} \cdot \text{SWAP} \cdot U((2|0)(0|\otimes I) - I)$$

A block-encoding of the (symmetric) Markov chain: $(\langle 0| \otimes I)W'(|0\rangle \otimes I) = P$

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \text{Pr}(\text{step to } v | \text{ being at } u) = \frac{w_{vu}}{\sum_{v' \in U} w_{v'u}}$$

$$W' := U^{\dagger} \cdot \text{SWAP} \cdot U$$

$$W := U^{\dagger} \cdot \text{SWAP} \cdot U((2|0)(0) \otimes I) - I)$$

A block-encoding of the (symmetric) Markov chain: $(\langle 0|\otimes I)W'(|0\rangle\otimes I)=P$

Multiple steps of the quantum walk:
$$(\langle 0|\otimes l)W^k(|0\rangle\otimes l)=T_k(P)$$

$$[T_k(x) = \cos(k \arccos(x))]$$
 Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)]$

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \text{Pr}(\text{step to } v | \text{ being at } u) = \frac{w_{vu}}{\sum_{v' \in U} w_{v'u}}$$

Szegedy walk operator

$$W' := U^{\dagger} \cdot \text{SWAP} \cdot U$$

$$W := U^{\dagger} \cdot \text{SWAP} \cdot U((2|0\chi 0| \otimes I) - I)$$

A block-encoding of the (symmetric) Markov chain: $(\langle 0| \otimes I)W'(|0\rangle \otimes I) = P$

Multiple steps of the quantum walk: $(\langle 0|\otimes l)W^k(|0\rangle\otimes l)=T_k(P)$

$$[T_k(x) = \cos(k \arccos(x))]$$
 Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)]$

Proof: Proceed by induction, observe $T_0(P) = I \checkmark$, $T_1(P) = P \checkmark$

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \Pr(ext{step to } v | ext{ being at } u) = rac{w_{vu}}{\sum_{v' \in U} w_{v'u}}$$

Szegedy walk operator
$$W' := U^{\dagger} \cdot \text{SWAP} \cdot U$$

$$W := U^{\dagger} \cdot \text{SWAP} \cdot U((2|0\rangle\langle 0| \otimes I) - I)$$

A block-encoding of the (symmetric) Markov chain: $(\langle 0|\otimes I)W'(|0\rangle\otimes I)=P$

Multiple steps of the quantum walk:
$$(\langle 0| \otimes I)W^k(|0\rangle \otimes I) = T_k(P)$$

$$[T_k(x) = \cos(k \arccos(x))$$
 Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)]$

Proof: Proceed by induction, observe
$$T_0(P) = I \checkmark$$
, $T_1(P) = P \checkmark$
 $(\langle 0| \otimes I)W^{k+1}(|0\rangle \otimes I) = (\langle 0| \otimes I)W'((2|0\rangle \otimes I) - I)W^k(|0\rangle \otimes I) = I$

$$=\underbrace{(\langle 0|\otimes I)W'(2|0\rangle}_{2P}\underbrace{\langle 0|\otimes I)W^{k}(|0\rangle\otimes I)}_{T_{k}(P)}-\underbrace{(\langle 0|\otimes I)W^{k-1}(|0\rangle\otimes I)}_{T_{k-1}(P)}$$

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \operatorname{Pr}(\operatorname{step to} v | \operatorname{being at} u) = rac{w_{vu}}{\sum_{v' \in U} w_{v'u}}$$

Szegedy walk operator
$$W' := U^{\dagger} \cdot \text{SWAP} \cdot U$$

$$W := U^{\dagger} \cdot \text{SWAP} \cdot U((2|0 \lor 0| \otimes I) - I)$$

A block-encoding of the (symmetric) Markov chain: $(\langle 0| \otimes I)W'(|0\rangle \otimes I) = P$

Multiple steps of the quantum walk:
$$(\langle 0| \otimes I)W^k(|0\rangle \otimes I) = T_k(P)$$

 $[T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)]$
Proof: Proceed by induction, observe $T_0(P) = I \checkmark$, $T_1(P) = P \checkmark$

Proof: Proceed by Induction, observe
$$I_0(P) = I \checkmark$$
, $I_1(P) = P \checkmark$

$$(\langle 0| \otimes I)W^{k+1}(|0\rangle \otimes I) = (\langle 0| \otimes I)W'((2|0\rangle\langle 0| \otimes I) - I)W^k(|0\rangle \otimes I) =$$

$$= \underbrace{(\langle 0| \otimes I)W'(2|0\rangle}_{2P}\underbrace{\langle 0| \otimes I)W^k(|0\rangle \otimes I)}_{T_k(P)} - \underbrace{(\langle 0| \otimes I)W^{k-1}(|0\rangle \otimes I)}_{T_{k-1}(P)}$$

Amplitude amplification problem

Given *U* such that

$$Uig|ar{0}ig
angle = \sqrt{p}|0
angleig|\psi_{\mathsf{good}}ig
angle + \sqrt{1-p}|1
angle|\psi_{\mathsf{bad}}
angle,$$

Amplitude amplification problem

Given U such that

$$Uig|ar{0}ig
angle = \sqrt{p}|0
angleig|\psi_{\mathsf{good}}ig
angle + \sqrt{1-p}|1
angle|\psi_{\mathsf{bad}}
angle,$$

prepare $|\psi_{\mathsf{good}}\rangle$ (with high probability).

Algorithm and its success probability

$$U\cdots \left[2|\bar{0}\chi\bar{0}|-I\right]U^{\dagger}\left[\left(|0\chi0|-|1\chi1|\right)\otimes I\right]U\left[2|\bar{0}\chi\bar{0}|-I\right]U^{\dagger}\left[\left(|0\chi0|-|1\chi1|\right)\otimes I\right]U$$

Amplitude amplification problem

Given U such that

$$Uig|ar{0}ig
angle = \sqrt{p}|0
angleig|\psi_{\mathsf{good}}ig
angle + \sqrt{1-p}|1
angle|\psi_{\mathsf{bad}}
angle,$$

prepare $|\psi_{\mathsf{good}}\rangle$ (with high probability).

Algorithm and its success probability

$$U\cdots[2|\bar{0}\chi\bar{0}|-I]\ U^{\dagger}\left[\left(|0\chi0|-|1\chi1|\right)\otimes I\right]\ U[2|\bar{0}\chi\bar{0}|-I]\ U^{\dagger}\left[\left(|0\chi0|-|1\chi1|\right)\otimes I\right]\ U$$
 amplitude of $\left|\psi_{\mathrm{good}}\right\rangle$ after k iterations:

$$\pm \sin((2k+1)\alpha)$$
, where $\alpha = \arcsin(\sqrt{p})$

Amplitude amplification problem

Given *U* such that

$$Uig|ar{0}ig
angle = \sqrt{p}|0
angleig|\psi_{\mathsf{good}}ig
angle + \sqrt{1-p}|1
angle|\psi_{\mathsf{bad}}
angle,$$

prepare $|\psi_{good}\rangle$ (with high probability).

Algorithm and its success probability

$$U\cdots [2|\bar{0}\chi\bar{0}|-I]\ U^{\dagger}\left[\left(|0\chi0|-|1\chi1|\right)\otimes I\right]\ U[2|\bar{0}\chi\bar{0}|-I]\ U^{\dagger}\left[\left(|0\chi0|-|1\chi1|\right)\otimes I\right]\ U$$
 amplitude of $\left|\psi_{\text{good}}\right\rangle$ after k iterations:

$$\pm \sin((2k+1)\alpha)$$
, where $\alpha = \arcsin(\sqrt{p})$

which is

$$\pm\cos((2k+1)\arccos(\sqrt{p}))=\pm T_{2k+1}(\sqrt{p}).$$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map.

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i \in i} |w_i \times v_i| & \cdot \\ \cdot & \cdot \end{bmatrix}$$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \varsigma_{i} |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} P(\varsigma_{i}) |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix},$$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \mathbf{S}_{i} |w_{i} \rangle \langle v_{i} | & \cdot \\ \cdot & \cdot \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} \mathbf{P}(\mathbf{S}_{i}) |w_{i} \rangle \langle v_{i} | & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \mathbf{\varsigma}_{i} |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} \mathbf{P}(\mathbf{\varsigma}_{i}) |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \mathbf{\varsigma}_{i} |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} \mathbf{P}(\mathbf{\varsigma}_{i}) |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Simmilar result holds for even polynomials.

Quantum algorithm design

Outline

Motivating example - the HHL algorithm

We want to solve large systems of linear equations

$$Ax = b$$
.

A quantum computer can nicely work with exponential sized matrices! Given $|b\rangle$, we can prepare a solution $\propto A^{-1}|b\rangle$.

Outline

Motivating example - the HHL algorithm

We want to solve large systems of linear equations

$$Ax = b$$
.

A quantum computer can nicely work with exponential sized matrices! Given $|b\rangle$, we can prepare a solution $\propto A^{-1}|b\rangle$.

Matrix arithmetic on a quantum computer using block-encoding

Target: A; Implementation:
$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix}$$
; Algorithm: $U' = \begin{bmatrix} f(A) & \cdot \\ \cdot & \cdot \end{bmatrix}$.

In HHL $f(x) = \frac{1}{x}$. Use Singular Value Transformation to implement it!

Outline

Motivating example - the HHL algorithm

We want to solve large systems of linear equations

$$Ax = b$$
.

A quantum computer can nicely work with exponential sized matrices! Given $|b\rangle$, we can prepare a solution $\propto A^{-1}|b\rangle$.

Matrix arithmetic on a quantum computer using block-encoding

Target: A; Implementation:
$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix}$$
; Algorithm: $U' = \begin{bmatrix} f(A) & \cdot \\ \cdot & \cdot \end{bmatrix}$.

In HHL $f(x) = \frac{1}{x}$. Use Singular Value Transformation to implement it!

Applications

- Optimal Hamiltonian simulation [Low et al.], Quantum walks [Szegedy]
- Fixed point [Yoder et al.] and Oblivious ampl. ampl. [Berry et al.]
- HHL, Regression [Chakraborty et al.], ML [Kerendis & Prakash], Property testing, ...

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} \iff A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).$$

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} \iff A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).$$

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} \iff A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).$$

One can efficiently construct block-encodings of

ightharpoonup an efficiently implementable unitary U,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} \iff A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).$$

- ► an efficiently implementable unitary *U*,
- a sparse matrix with efficiently computable elements,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} \iff A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).$$

- ► an efficiently implementable unitary *U*,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} \iff A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).$$

- ightharpoonup an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- ightharpoonup a density operator ho given a unitary preparing its purification.

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} \iff A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).$$

- ► an efficiently implementable unitary *U*,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- ightharpoonup a density operator ρ given a unitary preparing its purification.
- ▶ a POVM operator M given we can sample from the rand.var.: $Tr(\rho M)$,

Suppose that \overline{A} is s-sparse and $|A_{ij}| \le 1$ for all i, j indices.

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all i, j indices. Given "sparse-access "we can efficiently implement unitaries preparing "rows"

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all i, j indices. Given "sparse-access "we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,$$

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all i, j indices. Given "sparse-access "we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,$$

and "columns"

$$C: |0\rangle|0\rangle|j\rangle \rightarrow |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle|j\rangle + |2\rangle|j\rangle|garbage\rangle,$$

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all i, j indices. Given "sparse-access "we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,$$

and "columns"

$$C: |0\rangle|0\rangle|j\rangle \rightarrow |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle|j\rangle + |2\rangle|j\rangle|garbage\rangle,$$

They form a block-encoding of A/s:

$$\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle$$

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all i, j indices. Given "sparse-access "we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,$$

and "columns"

$$C: |0\rangle|0\rangle|j\rangle \rightarrow |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle|j\rangle + |2\rangle|j\rangle |\text{garbage}\rangle,$$

They form a block-encoding of A/s:

$$\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^{\dagger} \cdot (C|0\rangle|0\rangle|j\rangle)$$

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all i, j indices. Given "sparse-access "we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}} |i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,$$

and "columns"

$$C: |0\rangle|0\rangle|j\rangle \rightarrow |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle|j\rangle + |2\rangle|j\rangle|garbage\rangle,$$

They form a block-encoding of A/s:

$$\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^{\dagger}\cdot (C|0\rangle|0\rangle|j\rangle) = \left(\sum_{k}\frac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i\rangle|k\rangle\right)^{\dagger}\left(\sum_{\ell}\frac{\sqrt{A_{\ell j}}}{\sqrt{s}}|\ell\rangle|j\rangle\right)$$

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all i, j indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}} |i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,$$

and "columns"

$$C: |0\rangle|0\rangle|j\rangle \rightarrow |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle|j\rangle + |2\rangle|j\rangle|garbage\rangle,$$

They form a block-encoding of A/s:

$$\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^{\dagger}\cdot (C|0\rangle|0\rangle|j\rangle) = \left(\sum_{k}\frac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i\rangle|k\rangle\right)^{\dagger}\left(\sum_{\ell}\frac{\sqrt{A_{\ell j}}}{\sqrt{s}}|\ell\rangle|j\rangle\right) = \frac{A_{ij}}{s}$$

Implementing arithmetic operations on block-encoded matrices

ightharpoonup Given block-encodings A_i we can implement convex combinations.

Implementing arithmetic operations on block-encoded matrices

- \triangleright Given block-encodings A_i we can implement convex combinations.
- ▶ Given block-encodings *A*, *B* we can implement block-encoding of *AB*.

Implementing arithmetic operations on block-encoded matrices

- ightharpoonup Given block-encodings A_i we can implement convex combinations.
- ► Given block-encodings *A*, *B* we can implement block-encoding of *AB*.

Linear combination of (non-)unitary matrices [Childs and Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i \chi i| \otimes U_i$, and $P : |0\rangle \mapsto \sum_i \sqrt{p_i} |i\rangle$ for $p_i \in [0, 1]$.

Implementing arithmetic operations on block-encoded matrices

- ightharpoonup Given block-encodings A_i we can implement convex combinations.
- ► Given block-encodings *A*, *B* we can implement block-encoding of *AB*.

Linear combination of (non-)unitary matrices [Childs and Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i\rangle\langle i| \otimes U_i$, and $P : |0\rangle \mapsto \sum_i \sqrt{p_i} |i\rangle$ for $p_i \in [0, 1]$. Then $(P^{\dagger} \otimes I)U(P \otimes I)$ is a block-encoding of $\sum_i p_i U_i$.

Implementing arithmetic operations on block-encoded matrices

- ightharpoonup Given block-encodings A_i we can implement convex combinations.
- ► Given block-encodings *A*, *B* we can implement block-encoding of *AB*.

Linear combination of (non-)unitary matrices [Childs and Wiebe '12, Berry et al. '15]

Suppose that $U = \sum_i |i\rangle\langle i| \otimes U_i$, and $P : |0\rangle \mapsto \sum_i \sqrt{p_i} |i\rangle$ for $p_i \in [0, 1]$. Then $(P^{\dagger} \otimes I)U(P \otimes I)$ is a block-encoding of $\sum_i p_i U_i$. In particular if $(\langle 0| \otimes I)U_i(|0\rangle \otimes I) = A_i$, then it is a block-encoding of

$$\sum_i p_i A_i$$
.

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map.

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \varsigma_{i} |w_{i} \times v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix}$$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \varsigma_{i} |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} P(\varsigma_{i}) |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix},$$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \mathbf{\varsigma}_{i} |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} P(\mathbf{\varsigma}_{i}) |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Our main theorem about QSVT

Let $P: [-1,1] \to [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \mathbf{\varsigma}_{i} |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} \mathbf{P}(\mathbf{\varsigma}_{i}) |w_{i} \rangle \langle v_{i}| & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Our main theorem about QSVT

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \sum_{i} \mathbf{S}_{i} | \mathbf{W}_{i} \times \mathbf{V}_{i} | & \cdot \\ \cdot & \cdot \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} \mathbf{P}(\mathbf{S}_{i}) | \mathbf{W}_{i} \times \mathbf{V}_{i} | & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Simmilar result holds for even polynomials.

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain *M* via a product of two reflection operators.

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain:
$$M$$
; Updates: $W' = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$; Walk: $W^n = \begin{bmatrix} T_n(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$.

 $(T_d$ is the *d*-th Chebyshev polynomial of the first kind.)

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain:
$$M$$
; Updates: $W' = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$; Walk: $W^n = \begin{bmatrix} T_n(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$.

 $(T_d \text{ is the } d\text{-th Chebyshev polynomial of the first kind.})$

If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain:
$$M$$
; Updates: $W' = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$; Walk: $W^n = \begin{bmatrix} T_n(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$.

 $\overline{(T_d \text{ is the } d\text{-th Chebyshev polynomial of the first kind.)}}$ If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, \dots, d\}$, we get $P = \pm T_d$ in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain:
$$M$$
; Updates: $W' = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$; Walk: $W^n = \begin{bmatrix} T_n(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$.

 $(T_d$ is the d-th Chebyshev polynomial of the first kind.)

If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate *t* classical steps using $\propto \sqrt{t}$ quantum operations.

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain:
$$M$$
; Updates: $W' = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$; Walk: $W^n = \begin{bmatrix} T_n(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$.

(T_d is the d-th Chebyshev polynomial of the first kind.)

If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using $\propto \sqrt{t}$ quantum operations. I.e., implement

$$U' = \left[\begin{array}{cc} M^t & \cdot \\ \cdot & \cdot \end{array} \right]$$

Connection to Szegedy quantum walks

Szegedy defined (2004) quantisation of a symmetric Markov chain M via a product of two reflection operators. We can understand his algorithm as

Markov chain:
$$M$$
; Updates: $W' = \begin{bmatrix} M & \cdot \\ \cdot & \cdot \end{bmatrix}$; Walk: $W^n = \begin{bmatrix} T_n(M) & \cdot \\ \cdot & \cdot \end{bmatrix}$.

 $(T_d \text{ is the } d\text{-th Chebyshev polynomial of the first kind.})$

If we choose $\phi_j = \frac{\pi}{2}$ for all $j \in \{1, ..., d\}$, we get $P = \pm T_d$ in QSVT.

Quantum Fast-Forwarding Markov Chains [Apers & Sarlette (2018)]

Simulate t classical steps using $\propto \sqrt{t}$ quantum operations. I.e., implement

$$U' = \left[\begin{array}{cc} M^t & \cdot \\ \cdot & \cdot \end{array} \right]$$

Proof: x^t can be ε -apx. on [-1,1] with a degree- $\sqrt{2t \ln(2/\varepsilon)}$ polynomial.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1,1] \rightarrow [-1,1]$ be a degree-d even/odd polynomial map.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1,1] \to [-1,1]$ be a degree-d even/odd polynomial map. If H is Hermitian, then P(H) coincides with the singular value transform.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-d even/odd polynomial map. If H is Hermitian, then P(H) coincides with the singular value transform.

Removing parity constraint for Hermitian matrices

Let $P: [-1,1] \to [-\frac{1}{2},\frac{1}{2}]$ be a degree-d polynomial map. Suppose that U is an a-qubit block-encoding of a Hermitian matrix H.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \to [-1, 1]$ be a degree-d even/odd polynomial map. If H is Hermitian, then P(H) coincides with the singular value transform.

Removing parity constraint for Hermitian matrices

Let $P: [-1,1] \to [-\frac{1}{2},\frac{1}{2}]$ be a degree-d polynomial map. Suppose that U is an a-qubit block-encoding of a Hermitian matrix H. We can implement

$$U' = \left[\begin{array}{cc} P(H) & \cdot \\ \cdot & \cdot \end{array} \right],$$

using d times U and U^{\dagger} , 1 controlled U, and O(ad) extra two-qubit gates.

Single qubit quantum control using σ_z phases?

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & \sqrt{1-x^2} \\ \sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z} \cdot \ldots \cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Single qubit quantum control using $\sigma_{\rm Z}$ phases?

$$R(x) := \begin{bmatrix} x & \sqrt{1-x^2} \\ \sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z} \cdot \ldots \cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$; for all $\Phi \in \mathbb{R}^{d+1}$ we have

$$(*) = \left[\begin{array}{cc} P_{\mathbb{C}}(x) & iQ_{\mathbb{C}}(x)\sqrt{1-x^2} \\ iQ_{\mathbb{C}}^*(x)\sqrt{1-x^2} & P_{\mathbb{C}}^*(x) \end{array} \right],$$

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & \sqrt{1-x^2} \\ \sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z} \cdot \ldots \cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$; for all $\Phi \in \mathbb{R}^{d+1}$ we have

$$(*) = \left[\begin{array}{cc} P_{\mathbb{C}}(x) & iQ_{\mathbb{C}}(x)\sqrt{1-x^2} \\ iQ_{\mathbb{C}}^*(x)\sqrt{1-x^2} & P_{\mathbb{C}}^*(x) \end{array} \right],$$

(i)
$$\deg(P_{\mathbb{C}}) \leq d$$
 and $\deg(Q_{\mathbb{C}}) \leq d-1$, and

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & \sqrt{1-x^2} \\ \sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z} \cdot \ldots \cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$; for all $\Phi \in \mathbb{R}^{d+1}$ we have

$$(*) = \left[\begin{array}{cc} P_{\mathbb{C}}(x) & iQ_{\mathbb{C}}(x)\sqrt{1-x^2} \\ iQ_{\mathbb{C}}^*(x)\sqrt{1-x^2} & P_{\mathbb{C}}^*(x) \end{array} \right],$$

- (i) $\deg(P_{\mathbb{C}}) \leq d$ and $\deg(Q_{\mathbb{C}}) \leq d-1$, and
- (ii) $P_{\mathbb{C}}$ has parity- $(d \mod 2)$ and $Q_{\mathbb{C}}$ has parity- $(d-1 \mod 2)$, and

Single qubit quantum control using σ_z phases?

$$R(x) := \begin{bmatrix} x & \sqrt{1-x^2} \\ \sqrt{1-x^2} & -x \end{bmatrix}; \quad e^{i\phi_0\sigma_z}R(x)e^{i\phi_1\sigma_z} \cdot \ldots \cdot R(x)e^{i\phi_d\sigma_z} = (*)?$$

Theorem: Basic characterization [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$; for all $\Phi \in \mathbb{R}^{d+1}$ we have

$$(*) = \left[\begin{array}{cc} P_{\mathbb{C}}(x) & iQ_{\mathbb{C}}(x)\sqrt{1-x^2} \\ iQ_{\mathbb{C}}^*(x)\sqrt{1-x^2} & P_{\mathbb{C}}^*(x) \end{array} \right],$$

- (i) $\deg(P_{\mathbb{C}}) \leq d$ and $\deg(Q_{\mathbb{C}}) \leq d-1$, and
- (ii) $P_{\mathbb{C}}$ has parity- $(d \mod 2)$ and $Q_{\mathbb{C}}$ has parity- $(d-1 \mod 2)$, and

(iii)
$$\forall x \in [-1, 1]: |P_{\mathbb{C}}(x)|^2 + (1 - x^2)|Q_{\mathbb{C}}(x)|^2 = 1.$$

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$, and $P \in \mathbb{R}[x]$ be of degree d. There exists $\Phi \in \mathbb{R}^d$ such that

$$\prod_{j=1}^d \left(R(x) e^{i\phi_j \sigma_z} \right) = \left[\begin{array}{cc} P_{\mathbb{C}}(x) & . \\ . & . \end{array} \right],$$

where $\mathfrak{R}[P_{\mathbb{C}}]=P$ if and only if

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$, and $P \in \mathbb{R}[x]$ be of degree d. There exists $\Phi \in \mathbb{R}^d$ such that

$$\prod_{j=1}^{d} \left(R(x) e^{i\phi_j \sigma_z} \right) = \left[\begin{array}{cc} P_{\mathbb{C}}(x) & . \\ . & . \end{array} \right],$$

where $\mathfrak{R}[P_{\mathbb{C}}] = P$ if and only if

(i) P has parity-(d mod 2), and

Real quantum signal processing

Theorem: Focusing on the real part [Low, Yoder, Chuang (2016)]

Let $d \in \mathbb{N}$, and $P \in \mathbb{R}[x]$ be of degree d. There exists $\Phi \in \mathbb{R}^d$ such that

$$\prod_{j=1}^d \left(R(x) e^{i\phi_j \sigma_z} \right) = \left[\begin{array}{cc} P_{\mathbb{C}}(x) & . \\ . & . \end{array} \right],$$

where $\mathfrak{R}[P_{\mathbb{C}}] = P$ if and only if

- (i) P has parity-(d mod 2), and
- (ii) for all $x \in [-1, 1]$: $|P(x)| \le 1$.

Implementing the real part of a polynomial map

Direct implementation

Implementing the real part of a polynomial map

Direct implementation

$$- \underbrace{e^{i\phi_d\sigma_z}} - \underbrace{R(x)} - \underbrace{e^{i\phi_{d-1}\sigma_z}} - \cdots - \underbrace{R(x)} - \underbrace{e^{i\phi_0\sigma_z}} - = \begin{bmatrix} P_{\mathbb{C}}(x) & . \\ . & . \end{bmatrix}$$

Indirect implementation

Implementing the real part of a polynomial map

Direct implementation

$$- \underbrace{e^{i\phi_d\sigma_z}} - \underbrace{R(x)} - \underbrace{e^{i\phi_{d-1}\sigma_z}} - \cdots - \underbrace{R(x)} - \underbrace{e^{i\phi_0\sigma_z}} - = \begin{bmatrix} P_{\mathbb{C}}(x) & . \\ . & . \end{bmatrix}$$

Indirect implementation

$$= egin{bmatrix} P_{\mathbb{C}}(x) \ \cdot \ & \cdot \ & P_{\mathbb{C}}^*(x) \ \cdot \ & \cdot \ & \cdot \ \end{bmatrix}$$

Real implementation

1×1 case

1×1 case

Input:
$$\begin{bmatrix} x & \cdot \\ \cdot & \cdot \end{bmatrix}$$
 Modulation: $\begin{bmatrix} e^{i\phi} & \\ & e^{-i\phi} \end{bmatrix}$ Output: $\begin{bmatrix} P(x) & \cdot \\ & \cdot & \cdot \end{bmatrix}$

2 × 2 case (higher-dimensional case is similar)

Input unitary	Modulation	Output circuit
[X .	$\int e^{i\phi}$	P(x)
	$e^{-i\phi}$	
у.	$e^{i\phi}$	P(y) .
[]	e e	$-i\phi$] []

1×1 case

Input:
$$\begin{bmatrix} x & \cdot \\ \cdot & \cdot \end{bmatrix}$$
 Modulation: $\begin{bmatrix} e^{i\phi} & \\ & e^{-i\phi} \end{bmatrix}$ Output: $\begin{bmatrix} P(x) & \cdot \\ & \cdot & \cdot \end{bmatrix}$

2 × 2 case (higher-dimensional case is similar)

Input unitary	Modulation	Output circuit
[x.]	[e ^{iφ}] [P(x) .]
	$e^{-i\phi}$.	
у.	e ⁱ	
	- L	$e^{-i\phi}$] []
[X .]	$[e^{i\phi}]$	P(x)
у .	$e^{i\phi}$.	P(y) .
	$e^{-i\alpha}$	
	Į	$e^{-i\phi}$] []

1×1 case

Input:
$$\begin{bmatrix} x & \cdot \\ \cdot & \cdot \end{bmatrix}$$
 Modulation: $\begin{bmatrix} e^{i\phi} & \\ & e^{-i\phi} \end{bmatrix}$ Output: $\begin{bmatrix} P(x) & \cdot \\ & \cdot & \cdot \end{bmatrix}$

2×2 case (higher-dimensional case is similar)

Input unitary	Modulation	Output circuit
[X .	[e ^{iφ}	$\bigcap P(x)$.
	$e^{-i\phi}$	
<i>y</i> .	$e^{i\phi} = e^{-i\phi}$	P(y) .
[x .]	[e ^{iφ}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
у.	$e^{i\phi}$	P(y) .
	$e^{-i\phi} \ e^{-i\phi}$	<i>b</i>
[A .]	$\left[\begin{array}{cc} \mathrm{e}^{\mathrm{i}\phi} \mathrm{I} \end{array}\right]$	$ \left[P(A) . \right] $
	$\left[egin{array}{c} e^{-i\phi} I \end{array} ight]$	

Singular value decomposition and pseudoinverse

Suppose $A = W\Sigma V^{\dagger}$ is a singular value decomposition.

Then the pseudoinverse of *A* is $A^+ = V\Sigma^+W^{\dagger}$,

Singular value decomposition and pseudoinverse

Suppose $A=W\Sigma V^\dagger$ is a singular value decomposition. Then the pseudoinverse of A is $A^+=V\Sigma^+W^\dagger$, (note $A^\dagger=V\Sigma W^\dagger$) where Σ^+ contains the inverses of the non-zero elements of Σ .

Singular value decomposition and pseudoinverse

Suppose $A=W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+}=V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger}=V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Singular value decomposition and pseudoinverse

Suppose $A=W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+}=V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger}=V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Singular value decomposition and pseudoinverse

Suppose $A=W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+}=V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger}=V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Singular value decomposition and pseudoinverse

Suppose $A=W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+}=V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger}=V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Implementing the pseudoinverse using QSVT

Suppose that *U* is an *a*-qubit block-encoding of *A*, and $||A^+|| \le \kappa$.

Singular value decomposition and pseudoinverse

Suppose $A=W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+}=V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger}=V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and $||A^+|| \le \kappa$. By QSVT we can implement an ε -approximate block-encoding of

$$\frac{1}{2\kappa}A^+$$
,

using $O\left(\kappa \log\left(\frac{1}{\varepsilon}\right)\right)$ queries to U.

Singular value decomposition and pseudoinverse

Suppose $A=W\Sigma V^{\dagger}$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+}=V\Sigma^{+}W^{\dagger}$, (note $A^{\dagger}=V\Sigma W^{\dagger}$) where Σ^{+} contains the inverses of the non-zero elements of Σ .

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and $||A^+|| \le \kappa$. By QSVT we can implement an ε -approximate block-encoding of

$$\frac{1}{2\kappa}A^+$$

using $O(\kappa \log(\frac{1}{\varepsilon}))$ queries to U. For the corresponding approximating polynomial, see, e.g., the work of Childs, Kothari and Somma (2015).

New result: Singular vector transformation

Given a unitary U, and projectors $\widetilde{\Pi}$, Π , such that

$$A = \widetilde{\Pi} U \Pi = \sum_{i=1}^{k} \varsigma_i |\phi_i\rangle\langle\psi_i|$$

is a singular value decomposition.

New result: Singular vector transformation

Given a unitary U, and projectors Π , Π , such that

$$A = \widetilde{\Pi}U\Pi = \sum_{i=1}^K \varsigma_i |\phi_i \rangle \langle \psi_i |$$

is a singular value decomposition. Transform one copy of a quantum state

$$|\psi\rangle = \sum_{i=i}^k \alpha_i |\psi_i\rangle$$
 to $|\phi\rangle = \sum_{i=i}^k \alpha_i |\phi_i\rangle$.

New result: Singular vector transformation

Given a unitary U, and projectors Π , Π , such that

$$A = \widetilde{\Pi} U \Pi = \sum_{i=1}^{\kappa} \varsigma_i |\phi_i \rangle \langle \psi_i |$$

is a singular value decomposition. Transform one copy of a quantum state

$$|\psi\rangle = \sum_{i=i}^k \alpha_i |\psi_i\rangle$$
 to $|\phi\rangle = \sum_{i=i}^k \alpha_i |\phi_i\rangle$.

If $\varsigma_i \ge \delta$ for all $0 \ne \alpha_i$, we can ε -apx. using QSVT with compl. $O\left(\frac{1}{\delta}\log\left(\frac{1}{\varepsilon}\right)\right)$.

New result: Singular vector transformation

Given a unitary U, and projectors Π , Π , such that

$$A = \widetilde{\Pi} U \Pi = \sum_{i=1}^{\kappa} \varsigma_i |\phi_i \rangle \langle \psi_i|$$

is a singular value decomposition. Transform one copy of a quantum state

$$|\psi\rangle = \sum_{i=i}^k \alpha_i |\psi_i\rangle$$
 to $|\phi\rangle = \sum_{i=i}^k \alpha_i |\phi_i\rangle$.

If $\varsigma_i \ge \delta$ for all $0 \ne \alpha_i$, we can ε -apx. using QSVT with compl. $O\left(\frac{1}{\delta}\log\left(\frac{1}{\varepsilon}\right)\right)$.

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given *U* such that

$$U|\psi_{
m in}
angle = \sqrt{p}|0
angle \left|\psi_{
m good}
ight
angle + \sqrt{1-p}|1
angle \left|\psi_{
m bad}
ight
angle, \quad {
m prepare} \ \left|\psi_{
m good}
ight
angle.$$

New result: Singular vector transformation

Given a unitary U, and projectors Π , Π , such that

$$A = \widetilde{\Pi} U \Pi = \sum_{i=1}^{K} \varsigma_i |\phi_i \rangle \langle \psi_i|$$

is a singular value decomposition. Transform one copy of a quantum state

$$|\psi\rangle = \sum_{i=i}^k \alpha_i |\psi_i\rangle$$
 to $|\phi\rangle = \sum_{i=i}^k \alpha_i |\phi_i\rangle$.

If $\varsigma_i \geq \delta$ for all $0 \neq \alpha_i$, we can ε -apx. using QSVT with compl. $O\left(\frac{1}{\delta}\log\left(\frac{1}{\varepsilon}\right)\right)$.

Fixed-point and oblivious amplitude ampl. [Yoder et al., Berry et al.]

Amplitude amplification problem: Given U such that

$$U|\psi_{ ext{in}}
angle = \sqrt{p}|0
angle \left|\psi_{ ext{good}}
ight
angle + \sqrt{1-p}|1
angle \left|\psi_{ ext{bad}}
ight
angle, \quad ext{prepare} \left|\psi_{ ext{good}}
ight
angle.$$

Note that $(|0\rangle\langle 0|\otimes I)U(|\psi_{in}\rangle\langle\psi_{in}|) = \sqrt{p}|0,\psi_{good}\rangle\langle\psi_{in}|$; we can apply QSVT.

Suppose that H is given as an a-qubit block-encoding, i.e., $U = \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix}$.

Suppose that
$$H$$
 is given as an a -qubit block-encoding, i.e., $U = \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix}$.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given $t, \varepsilon > 0$, implement a unitary U', which is ε close to e^{itH} . Can be achieved with query complexity

$$O(t + \log(1/\varepsilon))$$
.

Gate complexity is O(a) times the above.

Suppose that H is given as an a-qubit block-encoding, i.e., $U = \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix}$.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given $t, \varepsilon > 0$, implement a unitary U', which is ε close to e^{itH} . Can be achieved with query complexity

$$O(t + \log(1/\varepsilon))$$
.

Gate complexity is O(a) times the above.

Proof sketch

Approximate to ε -precision $\sin(tx)$ and $\cos(tx)$ with polynomials of degree as above. Then use QSVT and combine even/odd parts.

Optimal complexity

$$\Theta\bigg(t + \frac{\log(1/\varepsilon)}{\log(e + \log(1/\varepsilon)/t)}\bigg)$$

Suppose that H is given as an a-qubit block-encoding, i.e., $U = \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix}$.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given $t, \varepsilon > 0$, implement a unitary U', which is ε close to e^{itH} . Can be achieved with query complexity

$$O(t + \log(1/\varepsilon))$$
.

Gate complexity is O(a) times the above.

Proof sketch

Approximate to ε -precision $\sin(tx)$ and $\cos(tx)$ with polynomials of degree as above. Then use QSVT and combine even/odd parts.

Optimal complexity

$$\Theta\left(t + \frac{\log(1/\varepsilon)}{\log(e + \log(1/\varepsilon)/t)}\right)$$
 cf. density matrix exp. $\Theta(t^2/\varepsilon)$ Lloyd et al., Kimmel et al.]

Suppose we can implement "quantum sampling": $U_p: |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$

Suppose we can implement "quantum sampling": $U_p: |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$

How can we efficiently compute, e.g., the entropy of (p_i) ?

Apply a block-encoding of a map $|i\rangle \mapsto \sqrt{\log(p_i)}|i\rangle$ to the state, then estimate the amplitude.

Suppose we can implement "quantum sampling": $U_p: |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$

How can we efficiently compute, e.g., the entropy of (p_i) ?

Apply a block-encoding of a map $|i\rangle \mapsto \sqrt{\log(p_i)}|i\rangle$ to the state, then estimate the amplitude. We need a block-encoding of $\sum_i \sqrt{p_i}|i\rangle i|$, and then transform singular values?

Suppose we can implement "quantum sampling": $U_p: |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$

How can we efficiently compute, e.g., the entropy of (p_i) ?

Apply a block-encoding of a map $|i\rangle\mapsto\sqrt{\log(p_i)}|i\rangle$ to the state, then estimate the amplitude. We need a block-encoding of $\sum_i\sqrt{p_i}|i\rangle i|$, and then transform singular values? Observation: a block encoding of $\sum_i\sqrt{p_i}|\tilde{\phi}_i\rangle i|$ suffices.

Suppose we can implement "quantum sampling": $U_p: |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$

How can we efficiently compute, e.g., the entropy of (p_i) ?

Apply a block-encoding of a map $|i\rangle\mapsto\sqrt{\log(p_i)}|i\rangle$ to the state, then estimate the amplitude. We need a block-encoding of $\sum_i\sqrt{p_i}|i\rangle i|$, and then transform singular values? Observation: a block encoding of $\sum_i\sqrt{p_i}|\tilde{\phi}_i\rangle i|$ suffices.

The same technique works for density operators!

Suppose we can implement "quantum sampling": $U_p: |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |i\rangle$

How can we efficiently compute, e.g., the entropy of (p_i) ?

Apply a block-encoding of a map $|i\rangle \mapsto \sqrt{\log(p_i)}|i\rangle$ to the state, then estimate the amplitude. We need a block-encoding of $\sum_i \sqrt{p_i}|i\rangle\langle i|$, and then transform singular values? Observation: a block encoding of $\sum_i \sqrt{p_i}|\tilde{\phi}_i\rangle\langle i|$ suffices.

The same technique works for density operators! Purified access $U_o: |0\rangle \mapsto \sum_i \sqrt{p_i} |\phi_i\rangle |\psi_i\rangle$, where $\rho = \sum_i p_i |\psi_i\rangle |\psi_i\rangle$

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let $f: [-1,1] \to \mathbb{C}$, then implementing a block-encoding of f(H) requires at least $\left\|\frac{df}{dx}\right\|_{I}$ uses of U, if $I \subseteq [-\frac{1}{2},\frac{1}{2}]$ is an interval of potential eigenvalues of H.

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let $f: [-1,1] \to \mathbb{C}$, then implementing a block-encoding of f(H) requires at least $\left\|\frac{df}{dx}\right\|_{I}$ uses of U, if $I \subseteq \left[-\frac{1}{2},\frac{1}{2}\right]$ is an interval of potential eigenvalues of H.

Proof sketch

The proof is based on an elementary argument about distinguishability of unitary operators.

An intuitive lower bound

Lower bound on eigenvalue transformation

Suppose that U is a block-encoding of a Hermitian matrix H from a family of operators. Let $f: [-1,1] \to \mathbb{C}$, then implementing a block-encoding of f(H) requires at least $\left\|\frac{df}{dx}\right\|_{I}$ uses of U, if $I \subseteq [-\frac{1}{2},\frac{1}{2}]$ is an interval of potential eigenvalues of H.

Proof sketch

The proof is based on an elementary argument about distinguishability of unitary operators.

Optimality of pseudoinverse implementation

Let
$$I := \left[\frac{1}{\kappa}, \frac{1}{2}\right]$$
 and let $f(x) := \frac{1}{\kappa x}$, then $\left.\frac{df}{dx}\right|_{\frac{1}{\kappa}} = -\kappa$.

Thus our implementation is optimal up to the $\log(1/\varepsilon)$ factor.

Summarizing the various speed-ups

Speed-up	Source of speed-up	Examples of algorithms
Exponential	Dimensionality of the Hilbert space	Hamiltonian simulation
	Precise polynomial approximations	Improved HHL algorithm
Quadratic	Singular value $=$ square root of probability	Grover search
	Singular values are easier to distinguish	Amplitude estimation
	Close-to-1 singular values are more flexible	Quantum walks

Summarizing the various speed-ups

Speed-up	Source of speed-up	Examples of algorithms
Exponential	Dimensionality of the Hilbert space	Hamiltonian simulation
	Precise polynomial approximations	Improved HHL algorithm
Quadratic	Singular value $=$ square root of probability	Grover search
	Singular values are easier to distinguish	Amplitude estimation
	Close-to-1 singular values are more flexible	Quantum walks

Some more applications

- Quantum walks, fast QMA amplification, fast quantum OR lemma
- Quantum Machine learning: PCA, principal component regression
- ► "Non-commutative measurements" (for ground state preparation)
- Fractional queries