Efficient simulation of quantum circuits with Fermionic Linear Optics

Áron Márton¹

¹Institute of Physics, Budapest University of Technology and Economics

QuSZIT seminar, Budapest, 2023.12.04.

Classical simulation of quantum circuits

Classical simulation of large quantum circuits is exponentially slow in general, but there are some exceptions:

From qubits to fermions

C4 code – A fermionic system that realizes a qubit (Abrikosov representation)

Fermions in a double quantum dot:

 \hat{a}_1, \hat{a}_2

Fermionic operators:

$$\hat{a}_{1}^{\dagger} | \mathcal{O} \rangle = | \mathcal{O} \rangle \quad \hat{a}_{2}^{\dagger} | \mathcal{O} \rangle = | \mathcal{O} \rangle$$

$$\hat{a}_{2}^{\dagger} | \mathcal{O} \rangle = | \mathcal{O} \rangle \quad \hat{a}_{2}^{\dagger} | \mathcal{O} \rangle = 0$$

$$\hat{a}_{1}^{\dagger} | \mathcal{O} \rangle = 0 \quad \hat{a}_{2}^{\dagger} | \mathcal{O} \rangle = 0$$

$$\hat{a}_{1}^{\dagger} | \mathcal{O} \rangle = 0 \quad \hat{a}_{2}^{\dagger} | \mathcal{O} \rangle = - | \mathcal{O} \rangle \quad \{\hat{a}_{j}, \hat{a}_{k}^{\dagger}\} = \delta_{jk}$$

$$\hat{a}_{1}^{\dagger} | \mathcal{O} \rangle = 0 \quad \hat{a}_{2}^{\dagger} | \mathcal{O} \rangle = - | \mathcal{O} \rangle \quad \{\hat{a}_{j}, \hat{a}_{k}\} = \{\hat{a}_{j}^{\dagger}, \hat{a}_{k}^{\dagger}\} = 0$$

$$\hat{a}_{1}^{\dagger} | \mathcal{O} \rangle = 0 \quad \hat{a}_{2}^{\dagger} | \mathcal{O} \rangle = 0$$

Qubit subspace (Q):

C4 code stabilizer:

$$\hat{S}_{C4} = -(1 - 2\hat{a}_1^{\dagger}\hat{a}_1)(1 - 2\hat{a}_2^{\dagger}\hat{a}_2)$$
$$|\psi\rangle \in \mathcal{Q}: \quad \hat{S}_{C4}|\psi\rangle = |\psi\rangle$$

Qubit states:

 $|0\rangle = |\mathcal{O}\rangle |1\rangle = |\mathcal{O}\rangle$

Pauli operators: $\hat{Z} = 1 - 2\hat{a}_{1}^{\dagger}\hat{a}_{1}$ $\hat{X} = \hat{a}_{1}^{\dagger}\hat{a}_{2} + \hat{a}_{2}^{\dagger}\hat{a}_{1}$

From fermions to Majoranas

Majorana fermions:

Pauli operators:

 $\hat{Z} = i\hat{c}_{2}\hat{c}_{3} = 1 - 2\hat{a}_{1}^{\dagger}\hat{a}_{1} - \hat{\lambda}_{1}^{\dagger} + \hat{\lambda}_{1}^{\dagger 2}$ $\hat{X} = i\hat{c}_{1}\hat{c}_{2} = \hat{a}_{1}^{\dagger}\hat{a}_{2} + \hat{a}_{2}^{\dagger}\hat{a}_{1} + \hat{a}_{1}\hat{a}_{2} + \hat{a}_{2}^{\dagger}\hat{a}_{1}^{\dagger}$

Pauli operators in the qubit subspace

C4 code stabilizer:

$$\hat{S}_{C4} = -\hat{c}_1 \hat{c}_2 \hat{c}_3 \hat{c}_4$$

More Pauli operators:

 $\hat{S}_{C4}\hat{Z} = i\hat{c}_1\hat{c}_4$

 $\hat{S}_{C4}\hat{X} = i\hat{c}_3\hat{c}_4$

Fermionic Gaussian states and Fermionic Linear Optics

Definition: A pure fermionic state is Gaussian iff it is a ground state of a quadratic Hamiltonian. $\hat{H} = i \sum_{j,k} A_{jk} \hat{c}_j \hat{c}_k$

Definition: FLO gates take Gaussian states to Gaussian states.

Gaussian states^{1,2}:

- 1. Take a general quadratic Hamiltonian
- 2. Determine its ground state
- 3. Show that this state can be fully characterized by the covariance matrix
- 4. Show that every expectation value can be calculated efficiently from the covariance matrix

FLO Gates^{1,2}:

- 1. Define the two types of FLO gates: Non-interacting time evolution, measurement of Majorana pairs
- 2. Show the covariance matrix transformations representing FLO gates.

A concrete example

[1] Bravyi, Sergey and Robert König. "Classical simulation of dissipative fermionic linear optics." Quantum Inf. Comput. 12 (2011)
 [2] Terhal, Barbara M., and David P. DiVincenzo. "Classical simulation of noninteracting-fermion quantum circuits." *Physical Review A* 65.3 (2002)

Pure Gaussian states

Take a system with N fermionic modes (N/2 qubits 2N Majoranas)

General quadratic Hamiltonian:

2 M

$$\hat{H} = i \sum_{j,k}^{2N} A_{jk} \hat{c}_j \hat{c}_k$$
 (+const) 0 energy offset: $A_{jj} = 0$

$$\hat{H}^{\dagger} = \hat{H} \longrightarrow A_{jk}^* = A_{jk}, \quad A_{kj} = -A_{jk} \qquad \underline{\underline{A}}$$
 is a real, antisymmetric matrix

<u>Theorem</u>: $\exists ! \underline{R} \in SO(2N)$ real, orthogonal matrix: $\underline{\underline{R}} \underline{\underline{A}} \underline{\underline{R}}^T = \bigoplus_{n=1}^{N} \begin{bmatrix} 0 & \alpha_n \\ -\alpha_n & 0 \end{bmatrix}$, $\alpha_n \in \mathbb{R}$ Introduce new Majorana fermions: Ground state:

$$\hat{c}'_{j} = \sum_{k} R_{jk} \hat{c}_{k} - \frac{\alpha_{n}}{|\alpha_{n}|} i \hat{c}'_{2n-1} \hat{c}'_{2n} |GS\rangle = |GS\rangle \quad \forall n$$

$$\hat{H} = i \sum_{j,k,l,m,n,o} \hat{c}_{j} R_{jk} R_{kl} A_{lm} R_{nm} R_{no} \hat{c}_{o} = 2i \sum_{n}^{N} \alpha_{n} \hat{c}'_{2n-1} \hat{c}'_{2n} \qquad |GS\rangle \langle GS| = \frac{1}{2^{N}} \prod_{n}^{N} \left(1 + \frac{\alpha_{n}}{|\alpha_{n}|} i \hat{c}'_{2n-1} \hat{c}'_{2n}\right)$$

Covariance matrix

Covariance matrix:

$$M_{jk}(|\psi\rangle) = \langle \psi | i \hat{c}_j \hat{c}_k | \psi \rangle - i \delta_{jk}$$

If $|\psi\rangle$ is Gaussian $\longrightarrow \underline{\underline{R}} \underline{\underline{M}} \underline{\underline{R}}^T = \bigoplus_{n=1}^N \begin{bmatrix} 0 & -\alpha_n / |\alpha_n| \\ \alpha_n / |\alpha_n| & 0 \end{bmatrix}$

Wick's theorem:

$$i^n \langle GS | \hat{c}_{j_1} \hat{c}_{j_2} ... \hat{c}_{j_{2n}} | GS \rangle = \Pr(M(|GS\rangle)_{j_1, j_2, ..., j_{2n}})$$

Expectation values can be expressed with the covariance matrix!

Example:

$$-\langle GS|\hat{c}_j\hat{c}_k\hat{c}_l\hat{c}_m|GS\rangle = M_{jk}M_{lm} - M_{jl}M_{km} + M_{jm}M_{kl}$$

FLO gates

Definition: FLO gates take Gaussian states to Gaussian states.

1. Non-interacting time evolution

$$\exp(-t\hat{c}_{j}\hat{c}_{k}) \quad (\text{Generally:} \exp(-t\sum_{jk}H_{jk}\hat{c}_{j}\hat{c}_{k}))$$
$$|GS\rangle \longleftrightarrow \hat{H}$$
$$\exp(-t\hat{c}_{j}\hat{c}_{k})|GS\rangle \longleftrightarrow \exp(-t\hat{c}_{j}\hat{c}_{k})\hat{H}\exp(t\hat{c}_{j}\hat{c}_{k})$$

Covariance matrix transformations:

$$\begin{split} M'_{pq} &= \langle GS| \exp(t\hat{c}_{j}\hat{c}_{k}) i\hat{c}_{p}\hat{c}_{q} \exp(-t\hat{c}_{j}\hat{c}_{k}) |GS\rangle - i\delta_{pq} \\ M'_{pq} &= \frac{\langle GS| (1+i\hat{c}_{j}\hat{c}_{k}) i\hat{c}_{p}\hat{c}_{q} (1+i\hat{c}_{j}\hat{c}_{k}) |GS\rangle}{2\langle GS| (1+i\hat{c}_{j}\hat{c}_{k}) |GS\rangle} - i\delta_{jk} \end{split} \xrightarrow{\text{Wick's}} \underline{M'} \text{ can be constructed from } \underline{M}$$

2. Measurement of Majorana pairs

$$\frac{1}{\sqrt{p}} \frac{1 + i\hat{c}_j\hat{c}_k}{2} |GS\rangle \\ p = \frac{1 + M_{jk}}{2} \end{bmatrix} \begin{array}{c} \text{Calculation of probabilities} \\ + \\ \text{Application of projectors} \end{array}$$

Algorithms for covariance matrix transformations

1. Non-interacting time evolution

 $\exp(-\theta \hat{c}_p \hat{c}_q)$

Algorithm 1: Rotation (M, θ, p, q)

 $M'[p,:] \leftarrow M[p,:] \cos(2\theta) - M[q,:] \sin(2\theta)$ $M'[q,:] \leftarrow M[q,:] \cos(2\theta) + M[p,:] \sin(2\theta)$ $M'[:,p] \leftarrow M[:,p] \cos(2\theta) - M[:,q] \sin(2\theta)$ $M'[:,q] \leftarrow M[:,q] \cos(2\theta) + M[:,p] \sin(2\theta)$ $M'[p,p] \leftarrow 0$ $M'[q,q] \leftarrow 0$ $M'[p,q] \leftarrow$ $M[p,q]\cos^2(2\theta) - M[q,p]\sin^2(2\theta)$ $M'[q,p] \leftarrow$ $-M[p,q]\cos^2(2\theta) + M[q,p]\sin^2(2\theta)$ return M'

2. Measurement of Majorana pairs

$$\frac{1}{\sqrt{p}}\frac{1+i\hat{c}_p\hat{c}_q}{2}|GS\rangle$$

Algorithm 2: Measurement (M,p,q) probability $\leftarrow (1/2)(1 + M[p,q])$ if $p \neq 0$ then $\mathbf{K} \leftarrow M[p,:]$ $\mathbf{L} \leftarrow M[q,:]$ $M' \leftarrow M + (1/2p)(\mathbf{L}\mathbf{K}^T - \mathbf{K}\mathbf{L}^T)$ $M'[p,:] \leftarrow 0$ $M'[q,:] \leftarrow 0$ $M'[:,p] \leftarrow 0$ $M'[:,q] \leftarrow 0$ $M'[p,q] \leftarrow 1$ $M'[q,p] \leftarrow -1$ end **return** (M', probability)

XX measurement can be simulated with FLO gates

 m_{xx} can be sampled efficiently with Fermionic Linear Optics

 $|\psi_a
angle\otimes|\psi_b
angle$ is a Gaussian state

XX measurement is not an FLO gate

How to sample the measurement outcome?

Single qubit states are Gaussian

Single qubit states:

 $\hat{S}_{C4} = -\hat{c}_1\hat{c}_2\hat{c}_3\hat{c}_4$ C4 stabilizer:

Gaussian

The covariance matrix:

$$\underline{M} = \begin{bmatrix} 0 & \sin(\theta)\cos(\phi) & -\sin(\theta)\sin(\phi) & \cos(\theta) \\ -\sin(\theta)\cos(\phi) & 0 & \cos(\theta) & \sin(\theta)\sin(\phi) \\ \sin(\theta)\sin(\phi) & -\cos(\theta) & 0 & \sin(\theta)\cos(\phi) \\ -\cos(\theta) & -\sin(\theta)\sin(\phi) & -\sin(\theta)\cos(\phi) & 0 \end{bmatrix}$$

Sampling the XX measurement

Sampling the measurement outcome of the XX measurement can be done by measuring **link-operators**.

Measurement of link-operators:

$$\hat{L}_1 \to l_1 \qquad \hat{L}_2 \to l_2$$

$$P(m_{xx} = 1) = P(l_1 = 1 \land l_2 = 1) + P(l_1 = -1 \land l_2 = -1)$$

$$P(m_{xx} = -1) = P(l_1 = 1 \land l_2 = -1) + P(l_1 = -1 \land l_2 = 1)$$

 $\begin{aligned} |\psi_a\rangle &= \cos(\theta_a/2)|0\rangle + e^{i\phi_a}\sin(\theta_a/2)|1\rangle \\ |\psi_b\rangle &= \cos(\theta_b/2)|0\rangle + e^{i\phi_b}\sin(\theta_b/2)|1\rangle \end{aligned} \longrightarrow P(m_{xx} = 1) = \frac{1}{2}(1 + \sin(\theta_a)\sin(\theta_b)\cos(\phi_a)\cos(\phi_b)) \end{aligned}$

Fermionic Linear Optics is useless in this case!

XX measurement can be sampled with individual X measurements

$$P(m_{xx} = 1) = P(m_{x_1} = 1 \land m_{x_2} = 1) + P(m_{x_1} = -1 \land m_{x_2} = -1)$$
$$P(m_{xx} = -1) = P(m_{x_1} = 1 \land m_{x_2} = -1) + P(m_{x_1} = -1 \land m_{x_2} = 1)$$

Sampling XX and ZZ measurements

Simulation of quantum error correction

- Noisy state preparation¹
- Coherent Z errors¹
- Coherent Z errors in planar graphs²
- Coherent Z errors and readout errors³

[1] Bravyi, Sergey, et al. "Correcting coherent errors with surface codes." npj Quantum Information 4.1 (2018)

[2] Venn, F., and B. Béri. "Error-correction and noise-decoherence thresholds for coherent errors in planar-graph surface codes. " *Physical Review Research* 2.4 (2020)

[3] Márton, Áron and János K. Asbóth. "Coherent errors and readout errors in the surface code." Quantum (2023)

Summary

Classical simulation of quantum circuits:

- . Product states
- . Clifford simulations
- 3. Fermionic Linear Optics

Qubit Majorana mapping (C4 code)

Pure Gaussian states ----- Covariance matrix

Possible application: Quantum error correction

FLO gates: - Free time evolution - Measurement of Majorana pairs

Thank you for your attention!