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In Quantum Mechanics, we have Schrodinger and
Heisenberg Pictures (and various interaction
pictures)
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Acting with A after time evolution is equivalent
to acting with what before time evolution?



The Heisenberg picture can also be applied to quantum
computers (quantum circuits)
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What does this circuit do? Je-inputstates To a complete set of operators?
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Quantum computer scientists prefer to think about the
Heisenberg picture a little differently
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Acting with A before U corresponds to acting with A after U.
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“Complete set of operators” = X and Z on every qubit. This
generates all Pauli strings

P = {all Pauli strings, e.g. X1Y4Z5Z6}

Clifford operators (gates): those that transform Pauli strings to Pauli
strings (not superposition of Pauli strings)



As an example, CNOT is the mapping:

What does a CNOT do? To-input-states To a complete set of operators?
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We track Pauli X and Z operators to find out that the curcuit
posed above ... is a SWAP
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Figure 1: Alice’'s quantum computer: a) network, b) analysis.



CNOT

All the basic relations needed to track gates
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What if some inputs are fixed?




If some inputs are fixed: use stabilizer formalism.
Also track stabilizers S
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Figure 4: Alice’s improved quantum computer: a) network, b) analysis.



What if some qubits are measured?




If some qubits are measured, update the list of stabilizers

a) | After measurement of Pauli string A:

) z 1. Identify M € S satisfying {M, A} = 0.
0) % 2. Remove M from the stabilizer

3. Add A to the stabilizer

4. For each N, where N runs over the other generators of S and the X and
Z operators, leave N alone if [N, A] = 0, and replace N with MN if
{N,A} =0.

works because every two Pauli strings
either commute or anticommute



This circuit performs the gate
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Figure 7: Creating the P gate: a) network, b) analysis.

Old name for S gate
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Now we can try to prove
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Homework: What about this circuit?




Summary of Gottesman’s stabilizer formalism

Begin:

Unitary gates:

Multiqubit Pauli
string A
measurement:

Logical inputs = X and Z operators
Ancillas [0> = Z stabilizers

Update X, Z, and stabilizers

If measurement result random 50%: Update X, Z, and stabilizers
1. Identify M € § satisfying {M, A} = 0.
2. Remove M from the stabilizer
3. Add A to the stabilizer

4. For each N, where N runs over the other generators of S and the X and
Z operators, leave N alone if [N, A] = 0, and replace N with M N if
{N,A} =0.

If measurement result certain 100%: find which stabilizers make up
A to obtain the result. = inverting a matrix, cost n*3



What about measurements whose result is not 50% random?

(—1)° mapping 3 qubits = 2 qubits,
acquire 3 bits of information,
| first measurement not 50%
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Aaronson & Gottesman, PRA 2004: “CHP simulator”
propagates stabilizer states

Like what we had before, but only stabilizers, no tracking of 77 7

— find out what a stabilizer circuit does when applied to all |0> input

Decrease cost of numerics for 100% certain measurements, by also

storing “destabilizer generators”

The algorithm represents a state by a tableau consist-
ing of binary variables x;;,2;; for all i € {1,..., 2n},

je{l,....,n},and r; forallie {1,..., 2n} |41]:
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Rows 1 to n of the tableau represent the destabilizer gen-
erators Ry,..., R,,, and rows n + 1 to 2n represent the
stabilizer generators R, 41, ..., Ran.

As an example, the 2-qubit state |00)
is stabilized by the Pauli operators +Z1 and +1Z, so a
possible tableau for |00) is




2021, Craig Gidney (Google): STIM, a Faster tableau Clifford
simulator (also storing inverses)

This paper presents “Stim", a fast simulator for quantum stabilizer circuits. The paper
explains how Stim works and compares it to existing tools. With no foreknowledge, Stim
can analyze a distance 100 surface code circuit (20 thousand qubits, 8 million gates, 1
million measurements) in 15 seconds and then begin sampling full circuit shots at a rate of
1 kHz. Stim uses a stabilizer tableau representation, similar to Aaronson and Gottesman’s
CHP simulator, but with three main improvements. First, Stim improves the asymptotic
complexity of deterministic measurement from quadratic to linear by tracking the inverse of
the circuit’s stabilizer tableau. Second, Stim improves the constant factors of the algorithm
by using a cache-friendly data layout and 256 bit wide SIMD instructions. Third, Stim only
uses expensive stabilizer tableau simulation to create an initial reference sample. Further
samples are collected in bulk by using that sample as a reference for batches of Pauli frames
propagating through the circuit.



Time to 1K samples (seconds)

Today, STIM is the tool of choice for Clifford
simulation (important use case: error correction)

Time to 1000'th sample from rotated surface code circuits
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Code distance (width=height=rounds)



One way to simplify circuits using the improved stabilizer
formalism uses state-channel duality
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Stabilizer formalism, summary
Typical quantum computation question: from all |0) inputs, apply
sequence of gates, what is the measured output statistics?

— CHP: If all gates Clifford (e.g., CNOT, Hadamard, S phase)
- simple to simulate, even if highly entangled (CHP algorithm)

Different question: what does a sequence of Clifford gates do as a
transformation?

— Gottesman can be used sometimes
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